Profiling Software 2G
User Manual

Version 4.3
Publication Number SFT-317000-000
Software Licensing Agreement and Product Warranty

The KIC software is subject to the following license terms and conditions.

1. KIC SOFTWARE LICENSE
 1.1 This is a software license granted by KIC, mailing address 16120 West Bernardo Drive San Diego, CA 92127.
 1.2 The KIC software is licensed to you as the end user and is not sold.
 1.3 The KIC software is copyrighted material.
 1.4 The KIC software is licensed for use with one or more pieces of associated hardware that together constitute a thermal process management system. This license allows you to use the software with the purchased system. You must purchase additional copies of the software if used with additional system hardware.
 1.5 You may not change, modify, decompile, disassemble, or otherwise reverse engineer the licensed software or any associated hardware.

2. LIMITED WARRANTY
 2.1 KIC warrants that the system hardware and software are free from defects in material and workmanship under normal use. KIC warrants that the system as a whole will perform substantially in accordance with the specifications set forth in the documentation provided with it.
 2.2 Warranty regarding rated temperature: Components of the system hardware are rated by KIC for proper performance up to a specified maximum temperature. Any component that KIC determines to have been exposed to temperatures higher than the rated temperature is not covered under this warranty.
 2.3 Start of the Warranty period. The warranty period begins the day the KIC product is delivered to you as the first customer.
 2.4 Obligations of KIC during the warranty period:
 2.4.1 Return for complete refund: If, within the first thirty (30) days after the start of the warranty, the customer returns, for any reason whatsoever, any of the purchased hardware or software in its original condition, KIC will refund the associated money paid and accept the return as payment for any money owed.
 2.4.2 Replacement: Within the first year of the start of the warranty, KIC will replace, on an exchange basis and without additional charge, any product proven defective in materials or workmanship.
 2.4.3 Correction of software: KIC will either replace or repair, without additional charge, any software that does not perform in substantial compliance with its documented specifications. In the foregoing circumstances, KIC will deliver either corrective code or a corrected copy of the software.
 2.4.4 Final Remedy: If KIC is unable to replace defective media or provide a corrected copy of the software within a reasonable amount of time, KIC will either replace the software with a functionally similar program or refund the license fees paid for use of the software.
 2.5 Exclusion of Other Warranties
 2.5.1 KIC does not warrant that the functions contained in the software will meet your requirements or that the operation of the software will be uninterrupted or error free. The Warranty does not cover any copy of the software that has been altered or changed in any way by you or others. KIC is not responsible for problems caused by changes in the operating characteristics of the computer hardware or operating system which are made after delivery of the software.
 2.5.2 EXCEPT WHERE LIMITED BY LOCAL JURISDICTIONS, KIC SHALL NOT IN ANY CASE BE LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT OR OTHER SIMILAR DAMAGES ARISING FROM ANY BREACH OF THESE WARRANTIES EVEN IF KIC OR ITS AGENT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 2.6 Other Conditions
 2.6.1 THE WARRANTIES SET FORTH ABOVE ARE IN LIEU OF ALL OTHER WARRANTIES, WHETHER ORAL, WRITTEN, OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR USE. THE REMEDIES SET FORTH ABOVE ARE THE CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES. Only an authorized officer of KIC may make modifications to this warranty, or additional warranties binding on KIC. Accordingly, additional statements such as advertising, collateral, or presentations, whether oral or written, do not constitute warranties by KIC and should not be relied upon as such. This warranty gives you specific legal rights, and you may have other rights, which vary by state and/or country.

3. LIMITATION OF LIABILITY
 3.1 In no case shall KIC's liability exceed the license fees paid for the right to use the licensed software or One Hundred Dollars ($100.00), whichever is greater.
Table of Contents

INTRODUCING THE SOFTWARE ... 1
INSTALLING THE SOFTWARE .. 2
 Languages ... 2
 To install the software: .. 2
STARTING THE SOFTWARE ... 3
 To start the software: .. 3
 To end the software session: .. 4

SELECTING GLOBAL PREFERENCES ... 5
 Restricting actions by password: ... 6
 To enable password protection: .. 6
 Copying data to the network .. 7

DEFINING THE PROCESS WINDOW SETUP ... 8
 Selecting a solder paste ... 9
 Editing Process Window specifications .. 10
 Assigning separate thermocouple specifications ... 11
 Saving the Process Window .. 12
 To create a Process Window: ... 12
 Change Specs Name .. 13
 Using Sweet Spot Target (Optional) .. 13

MONITORING HARDWARE STATUS .. 14

RUNNING A PROFILE ... 15
 Specifying oven characteristics: .. 16
 To identify a new oven to the system: ... 16
 To specify an oven recipe: .. 17
 Attaching thermocouples ... 19
 Attaching the Air TC: ... 19
 Attaching standard TCs .. 19
 Selecting thermocouples for the profile .. 20
 Starting the profile ... 21
 To start the profile: .. 21
 Viewing the live profile graph .. 22
 Viewing the profile and statistics ... 24
 Manual profile prediction ... 25
 Analyzing the profile graph display .. 26
 Analyzing profile data with the graph option tools .. 28
 Viewing temperature data at selected points .. 28
 Enlarging graph details with the zoom option .. 28
 Statistics Table ... 31
 Editing oven recipes and TC labels ... 32
 To display and use the TC and Recipe Editor screen: ... 32
 Profile screen buttons ... 33
 Upon exiting the graph screen: ... 34

USING PROFILE EXPLORER .. 36
 Understanding the command buttons: ... 37
 Comparing multiple profiles .. 37
 To create an overlay profile: ... 37
 Inserting software data files from an outside source ... 41

PRINTING PROFILE DISPLAY SCREENS .. 42
 Print Format #1- Portrait ... 42
 Print Format #2- Landscape .. 43
PROFILING WITH A WAVE SOLDER MACHINE .. 44
 Wave Surfer profiling fixture .. 44
WAVE SOLDER PROFILING ... 45
 Global Preferences .. 45
 Process Window .. 45
RUNNING A WAVE SOLDER PROFILE .. 47
 Zone length, minimum and maximum temperature settings 48
 Customize Wave Solder Machine Configuration .. 48
 Entering temperature setpoints and conveyor speed ... 50
 Connecting the Air TC .. 50
 Connecting wave TCs ... 51
 Connecting product TCs ... 52
 Selecting the thermocouples and starting a profile .. 53
VIEWING THE LIVE PROFILE GRAPH .. 55
PROFILE GRAPH DISPLAY ... 57
 Preheat tab ... 57
 Wave tab ... 58
 Pointer Slopes tab .. 59
 Manual profile prediction ... 59
 Analyzing the profile graph ... 60
 Graph Controller .. 61
 Graph option menu ... 62
 Tips for profiling wave solder .. 65
ADDITIONAL WAVE APPLICATION SETTINGS .. 66
 Run A Profile .. 66
 Select TC Screen ... 67
 ... 67
 Profile Graph Display ... 67
PROFILING THERMAL CURING PROCESSES ... 68
 To run a cure process profile: .. 68
PROFILING TEMPERATURE VS. TIME PROCESSES ... 69
 CONSIDERATIONS WHEN USING THE SOFTWARE .. 69
 Global Preferences .. 69
PROCESS WINDOW SETUP ... 70
 To run a temperature vs time process profile: ... 71
 Selecting the thermocouples and starting a profile .. 72
VIEWING THE LIVE PROFILE GRAPH DISPLAY ... 74
VIEWING THE PROFILE AND ITS STATISTICS ... 75
 Description tab ... 75
 Graph Controller .. 76
 Graph Option menu ... 77
 Profile screen buttons .. 78
EXITING THE PROFILE SCREEN ... 79
 Saving changes to the profile .. 79
 Saving changes to the Process Window ... 79
USING THE SRA SMART REFLOW ANALYZER .. 80
 SRA PROFILING ... 81
 Global Preferences .. 81
RUNNING AN SRA PROFILE .. 82
 Zone length, Minimum and Maximum temperature settings 83
 Entering temperature setpoints and conveyor speed ... 83
 Selecting a Process Window .. 84
 Creating a New Process Window .. 84
 Starting an SRA profile ... 85
VIEWING THE LIVE PROFILE GRAPH ... 86
SRA PROFILE GRAPH DISPLAY ... 88
 General tab .. 88
 Avg Temps By Zone tab .. 88
 Reflow Specifications tab .. 88
 Oven Recipe; Measured vs Setpoint; HTI ... 89
 Compare tab ... 89
SPC CHARTING WITH SRA .. 90

APPENDIX A: USING OPTIONAL SOFTWARE ... 91
 USING NAVIGATOR POWER FOR PROFILE OPTIMIZATION 92
 Conveyor speed constraints .. 92
 USING AUTO-FOCUS POWER .. 93
 Selecting profile optimization settings .. 93
 Conveyor speed constraints .. 93
 Setting product dimensions for Auto-Focus ... 94
 Auto-Focus confirm screen .. 94
 DISPLAYING STATISTICAL PROCESS CONTROL DATA 97
 To view a product's chart(s) and/or SPC data: ... 97
 SPC chart display ... 98
 SPC charting for SRA data .. 100

APPENDIX B: WRITING DATA OVER A NETWORK .. 119

APPENDIX C: USING THE PROCESS WINDOW INDEX TO QUANTIFY THERMAL PROFILE PERFORMANCE ... 121

APPENDIX D: HOW TO RUN PROFILES WITH PROFILE STACKING 124
 LED MODES AND DESCRIPTIONS FOR THE SPS SMART PROFILER 124
 AT THE PC .. 124
 AT THE OVEN .. 125
 BACK AT THE PC .. 128
 Downloading and Viewing Profiles .. 128
 Name Product and Select Process Window .. 129
 Enter Oven SetPoints and Conveyor Speed Screen 129
 Label Thermocouples for the Profile ... 130

CONTACTING KIC .. 132
Introducing the software

Used together with a profiler, this software provides all the tools you need for basic thermal profiling. It lets you:

- Specify operating parameters
- Define individual process setups
- Monitor the status of your profiler hardware
- Graphically display profile data for analysis
- Manage data from multiple profiling runs

Optional programs

The functionality of the standard software can be enhanced by using the optional software programs:

- **Navigator Power** – automatically finds the optimal oven setup for each product you profile.
- **Auto-Focus Power** – calculates the ideal initial oven recipe to avoid typical oven setup problems.
- **Statistical Process Control** – displays profile data to chart Process Capability Index (Cpk) values.
- **Virtual Profiling** – calculates virtual product profiles when the MVP fixture is run through the reflow oven.

These enhancement options are distributed on and activated from a *software key*—a removable USB thumb drive that can be separately purchased from KIC.

Profilers

The software is compatible with several different hardware models:

1. SPS Smart Profiler
2. SRA Smart Reflow Analyzer
3. X⁵
4. K²

Some illustrations in this manual may reference the X⁵ profiler. When using the software with the K² profiler, references to that model will appear in the same locations. The user interface is otherwise identical. Some functions are only available with the SPS Smart Profiler (See Appendix D: How to run profiles with Profile Stacking). For specific information regarding your profiler hardware, consult one of the following publications:

- SPS Smart Profiler Hardware Guide, (Publication Number PTG-330310-000)
- SRA Smart Reflow Analyzer Hardware Guide, (Publication Number SRA-330200-000)
- X⁵ Profiler Hardware Guide, (Publication Number EXP-337310-000)
- K² Profiler Hardware Guide, (Publication Number EXP-331310-000)
Installing the software

Minimum PC requirements

- Dual Core / 1GHz processor PC with 2GB RAM
- 2GB available storage
- Video 1024 x 768 / 16-bit color
- 1 available USB port (for software key)
- 1 available USB port for data download
- For product compatibility with Windows® operating systems, visit our website at http://kicthermal.com/support/download/os-compatibility-chart

Note: Additional powered USB ports may be needed for additional accessories.

Languages

The software supports the following languages:

- English
- German
- Spanish
- Japanese
- Korean
- Simplified Chinese
- Traditional Chinese

The use of specific languages depends on the operating system:

- English, German, and Spanish can be run on any of the supported Windows operating systems.
- Japanese, Korean, Simplified Chinese, and Traditional Chinese cannot be used with English versions of Windows operating systems.
- To run the software in Japanese, the operating system must be Windows-Japanese version.
- To run the software in Simplified or Traditional Chinese, the operating system must be Windows-Chinese version.

To install the software:

1. Insert the USB flash drive into a USB port on your computer
2. Depending upon your computer setup, a dialog box may appear. If it does, select Open folder to view files. If a dialog box does not appear, use Windows Explorer to browse to the USB flash drive directory.
3. Double-click the installation file in the root directory to begin the installation and follow the instructions* for the installation program as prompted as the screens are displayed.

 The software installation automatically adds a KIC folder to main Windows Start Menu.

*When installing the software over an existing Profiling Software 2G directory, the installation will automatically create a backup folder of the existing directory. A warning message will be displayed when selecting an existing directory, and a checkbox can be de-selected if you do not wish to create a backup. The name of the backup directory created will be C:\Profiling Software 2G_Old_MM-DD-YYYY.

*Some optional features may require a selection to be made during the installation process to be enabled. You should only select the optional feature if it was purchased and/or you have a license for that feature.

Note: If you have a question regarding your hardware or software configuration, contact KIC Tech Support at tech@kicmail.com
Starting the software

To start the software:

1. From the Windows Start button, navigate through the All Programs list to locate and open the software product folder that was automatically setup during installation.

2. Click on the software icon/filename.

 The main screen appears:

3. Click on one of the buttons to begin one of the software function described below:

 - **Global Preferences**
 Set units of measure, maximum product start temperature, hardware configuration, and password.

 - **Define/Edit Process Window**
 Create or edit Process Window files for solder paste and profile specifications.

 - **Hardware Status**
 Show the status of the oven controller (if applicable), the profiler, and the optional software key.

 - **Run a Profile**
 Begins the step-by-step procedure for running a product profile.

 - **Run Profile Stacking**
 Begins the step-by-step procedure for running multiple profiles in stacking mode. See Appendix D

 - **Profile Explorer**
 Filing system used to manage and view all profiles run using the software.

 - **Exit**
 Exits the program, closing the application.
To end the software session:

1. Return to the main screen by clicking one of these buttons:
 - From the Global Preferences, Run a Profile, or Define Process Window screens, click…
 - From the Hardware Status screen, click…
 - From the Profile Explorer screen, click…

2. Back on the main screen, click on the Exit button.
Selecting Global Preferences

You access the Global Preferences settings by clicking on the globe button on the main screen. You set your preferences on the Global tab.

- **Units of measure** – There are two drop down menus to choose units for Conveyor Speed and Distance, and weight. (The Weight is only used with the Auto-Focus program.)

- **Product start temperature** – The temperature of all the thermocouples attached to the product and the profiler must be below this temperature to start a profile. This will insure that a profile is not started while the board is still too hot. Input a value in the field or use Slider bar.

- **Profiling hardware** – The software detects and displays the model(SPS, X⁵, K²) of any connected profiler. If you connect a Wi-Fi SPS or Dual model X⁵, the software displays radio buttons that let you identify the communication mode of the unit as either Datalogger or Transmitter:

- Using an optional hardware fixture lets you perform *Manual Virtual Profiling (MP)*. If you check the MVP box, a percentage field appears that lets you specify the maximum Process Window Index value needed to start Virtual Profiling. (See [Using Virtual Profiling](#) section for details)
Note: If you are running on an oven with communication compatibility with the software, there will also be a field appears to let you input an *oven name*. The name is saved with the profile and can be sorted on in the Profile Explorer.

- **Languages** – Select the language that you wish to run the software. It is necessary to restart the software after changing to a different language. See important information about Languages on page 2.

- **Engineer password** – By checking this and entering a password you can control access to certain menus in the software.

- **Copy Data to Network** – Checking the Copy Data to Network box lets you store files and data to a network location for backup or archival purposes.

Restricting actions by password

At various points in the software you can restrict the ability to perform certain functions by protecting access to them with passwords.

To enable password protection:

1. On the Global Preferences screen, click the **Engineer Password** check box.

 A text entry field appears to the right.

 ![Engineer Password Field](image)

2. Type the password in the field.

3. Click the **Save** button to establish the password.

 ![Password Entry Prompt](image)

After the password is established, the software will prompt for entry when a protected function is attempted. For example, clicking the Global Preferences button on the main screen displays the prompt shown here:

![Password Prompt](image)

Similar password protection applies to the functions listed below:

- Saving or deleting Process Windows or changes to Process Windows in the Process Window screen
- Removing ovens on the first Run a Profile screen
- Deleting a profile in the Profile Explorer
- Accessing the Optimization tab on the Profile Graph and Statistics screen
- Accessing the graph controller
Copying data to the network

The *Copy to Network* tool allows you to save copies of all Profiling Software files and data to a network location for backup or archival purposes. All data will still be resident in the local directory. When you click the check box, the tool software launches, and an icon appears in the system tray area. Right click, and then choose *Settings* to configure the *CopyToNetwork* settings.

![CopyToNetwork software tool screen](image)

Select the folders and/or data to be copied and then enter or browse to the network location. You must enter a valid network path. Click the Save and Start button to begin copying the selected files and folders to selected network location.

The software will prompt you to either, copy all the data now or save the settings without copying the data.

![CopyToNetwork message](image)

Yes – The selected data is copied to the selected network location and the settings are saved.

No- The settings are saved, but no data is copied.

Notes:
- If the network location is not available, is an invalid path, or the network is disconnected, Profiling Software temporarily writes the selected data to the C:\Profiling Software 2G_Data_Backup_ folder until the network path or connection has been reestablished.
- The CopyToNetwork tool launches automatically if the Copy to Network option is checked in the Global Preferences-Barcode tab.
- Whenever any selected folder is updated with new/modified information, the new information is automatically backed up to the network location without any further user interaction.
Defining the Process Window setup

Process Window name – Name of the Process Window file that includes the statistics chosen and limits for those statistics, along with whatever text is typed in the Description field. See Figure 2.

- **Solder paste menu** - A read only library list of numerous solder pastes along with the statistics and limits suggested by the paste mfg., also included is a User-Defined option in the list which allows you to create a spec. of your own. See below for additional details.

- **Edit specs** – Screen allowing you to edit or choose statistics and limits for a chosen solder paste or define your own specs.

- **Wave** – This checkbox switches between the process specs and the Wave process specs for the selected Process Window. Set up a Process Window specific to Wave TCs for Wave Solder profiling.

- **Read only text box** – Shows the paste name, statistics name, and limits for a Process Window chosen, edited, or saved by you. To edit select the Edit Specs button.

- **Same specs for all TCs** – By deselecting this checkbox, you can assign separate specifications for each individual thermocouple you are using. After deselecting the checkbox, you’ll need to click on the Edit Specs button to choose which statistics will be used and what spec limits will be set for each thermocouple used. This option would be used if you had component specific specifications that differ from the general solder paste specs. Another use for this would be if you wanted to monitor the actual board temperature as well as component temps. You would then only select the statistics for that TC that are relevant. If you wish to use the same specifications for all thermocouples, put a check mark in the box.

- **Select TC to view** – This dialog box will appear only if the Same Specs for all TCs checkbox is deselected. By clicking on the dropdown menu, you can view the specifications that have been defined for that number thermocouple. If a description was included, it will be displayed next to Label.

- **Process Window description** – Field allowing for freehand notes for a particular Process Window.
Selecting a solder paste

Figure 3: Solder Paste List

Solder Paste menu - Once you have clicked on the Solder Paste Menu you will have a list of pastes to choose from. Use the scroll bar on the right to find your paste, and then click on the paste in the list. See Figure 3.

- Clicking on the green check will accept that paste and load its specs automatically. You will then return to the Process Window screen, after being presented disclaimer information.

- Clicking on the picture of the paste jar and tube will give you technical support information for the solder paste Mfg. that you chose.

- Clicking on the red X will cancel your selection and return you to the Process Window screen without making any changes.

Note: The solder paste list is updated periodically. Check the Internet for updates -- www.kicthermal.com
Editing Process Window specifications

Process Window name is listed at the top of the screen. See Figure 4.

There is a single drop-down list at the top that contains all of the available specifications that can be applied to your Process Window. These specifications are specific limits or a group of limits that define the overall Process Window for your product. These specifications include Slope, Preheat, Soak, Peak temperatures, and Time above temperatures.

Spec details – The Spec details coincide with the selected Specification. For each Specification selected, enter the Temperature, and Time limits. These limits are usually dictated by the solder paste used. The software uses the limits to measure the profile PWI.

Note: Changes made within this screen will have a direct effect on the profile PWI value.

Once you complete all spec modifications, click on the green check button to apply your changes. Clicking on the red X (cancel) button will cancel your changes and exit.
Assigning separate thermocouple specifications

TC selection & label

If you choose to assign separate specs for each TC, click the Edit Specs button and the screen will now appear with an additional area for TC Selection & Label. See Figure 5.

- **Select** - Use the Select drop-down menu to select the TC whose specifications you wish to view/edit. The Spec Details for the selected TC is displayed.
- **TC label** - This area will allow you to type in a description or label to identify that particular TC. If left blank, the TCs will simply be identified as TC2, TC3, etc.

Note: When separate specs are being used, this is the only place where you can select or deselect which TCs will be used for a profile.

Once you have completed all edits of the specs you can click on the Green Check button and your changes will be applied. Clicking on the Red X (Cancel) button will cancel your changes and exit. See Figure 5.

Note: If you are having trouble defining your process specifications, contact us at tech@kicmail.com

Select TC to view – Drop-down menu containing the TCs that have already been defined. (Previous step) See Figure 6.
Saving the Process Window

To create a Process Window:

1. Choose a solder paste from the Solder Paste menu.
2. Edit the specs if necessary. See Page 10 for details.
3. Enter a name the Process Window.
4. Save the Process Window.

To save - Click on the green check (Save and Exit) button. A dialog box will appear asking if you want to save the changes to the new Process Window file. See Figure 8.

Clicking on Yes will save it and exit to the main screen. You can click on No and click on the red X “cancel button” to exit without accepting or saving any changes.
Change Specs Name

If you wish to rename the label for a particular statistic, start by clicking on the Change Specs Name button (found on the Edit Specs screen), which opens a separate window. Put a check mark in the checkbox at the top of the screen to enable the change function. Next, locate the desired specification in the greyed out columns, and type in the new name in the corresponding editable column. Click Save, then Exit to close the window and return to the Edit Specs screen.

Using Sweet Spot Target (Optional)

If you purchased the Sweet Spot Target option, you will see an additional checkbox on the main Process Window screen. Putting a checkmark in this box will enable this feature for the specified Process Window:

Normally, when selecting a specification, only an upper and lower limit is defined, and the “target” value is automatically the center of the upper/lower limits. With the Sweet Spot Target option, enabling this feature allows you to manually define your own Target value for each statistic. This function may be desired when there is a defined specification window, but the desired optimal value may not be the exact center of the limits.
Monitoring Hardware Status

Oven Controller – Shows the status of the connection between the software and any connected oven. Contact KIC for details about connecting your reflow oven.

Profiler status panel – Names the currently selected profiler and displays the following information:
- Profiler communication status
- COM port – when connected.
- Temperature display – for all connected thermocouples.
- Battery Voltage.
- Internal Temperature – of profiler.
- Maximum Temperature Capability – This value determines the maximum temperature that the profiler can read.

Software Key – Shows the status of any software key that is connected. Displays the functions associated with the software key.
Running a profile

The Run a Profile button will guide you through a series of screens, which will finish at a completed and graphed profile. To move through these screens you can use the Back, Next, or Cancel buttons located at the bottom of the screen.

![Figure 10: Run a Profile Screen #1]

Settings on the Name Product and Select Process Window:

Product Name – Enter in a unique product name (long file names are acceptable) or choose an existing product name from the drop down list.

Process Window – Choose a Process Window from the drop down list. These Process Windows are created in the Define/Edit Process Window screen which is accessed from the main screen.

Application – Select your Application type/profiling fixture from the drop down list.

Sample Rate - Select the number of samples per second from the drop-down list for each product.

Set Trigger – Manually set the Middle and profile End temperature triggers for each product.
- Note: The Profile start temperature trigger is determined by the Maximum Product Temperature at Start of Profile setting in the Global Preferences screen. The start trigger value is always 2°C above this value.
- Note: For Temperature vs. Time profiling, trigger temperatures are not used. Instead a Profile Stop button is displayed in the bottom-right hand corner of the profile graph screen.

Oven Name – Enter a unique oven name or choose an existing oven from the drop-down list. The oven will have information about the number of zones saved with it as well as other zone information. This is entered on the next screen.

Remove Oven button will delete the oven name currently displayed in the field.
- If you are running the software on an oven controller computer that is communication compatible with the software the number of zones is already known and the oven name will be entered in the Global Preferences screen, not on this screen. In addition, the Enter Oven Setpoints and Conveyor Speed screen is skipped because the software already has the recipe information from the oven controller.

Enable Auto-Focus – Enables or disables the Auto Focus tool for the current profile (requires software key).

Profile Description – Allows for freehand typing of any notes you may want to include with this profile.
Specifying oven characteristics

To ensure accurate profile data, you may need to enter specific information into the software about the oven(s) you intend to use--information that changes the default values used by the software’s predictive algorithms. These default values are stored in an oven *initialization* file that the software creates when you first enter the name of a new oven. The software adds the extension `.kiccfg` to the name you entered and stores the file in this location: `C:\Profiling Software 2G\Ovens`

Unless you specify otherwise, the software works with the following initialization file default assumptions:

- The zones are uniform and consecutive with no large gaps between them.
- The minimum temperature for all zones is 70° C.
- The maximum temperature for all zones is 350° C.
- Default setpoint values start at 100° C and increases at 5° intervals at each zone.

At the start of the profiling process, the software displays a series of screens that let you change the default values in the file to accurately reflect your equipment. You will likely need to set some values, such as the length of oven heating zones, and min/max temperature limits only once--when you first set up the oven. Others, such as temperature setpoints and conveyor speed values that make up an oven *recipe*, you may change frequently to match to new products.

To identify a new oven to the system:

1. On the **Name Product and Select Process Window** screen, type a new, unique name in the **Oven Name** field.

 ![Oven Name Field](image)

2. Click the next arrow button.

 The Verify the Length of Each Zone and the Minimum and Maximum Setpoint Temperatures screen appears.

 ![Verify Zone Length Screen](image)
3. In the **Number of Zones** field, type in the quantity for the oven.

The screen populates with numbered zones and associated temperature fields:

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Setpoint(Celsius)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Max Setpoint(Celsius)</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

4. Deselect the **All Zone Lengths are the same** check box.

The screen populates with default length values:

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length [inches]</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Min Setpoint(Celsius)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Max Setpoint(Celsius)</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
</tbody>
</table>

5. Type new values in the **Length** fields.

6. If needed, type in replacement values for the minimum and maximum temperature setpoint values.

7. Click the back arrow button to save the settings or click the next arrow button to save the settings and display the next screen to specify an oven recipe.

To specify an oven recipe:

1. On the **Name Product and Select Process Window** screen, select an oven from the **Oven Name** field pull down list.
2. Click the next arrow button.

The Enter Oven Setpoints and Conveyor Speed screen appears.

3. Type in new temperature values for the top of the oven zones.

4. If the bottom of the zones are to have different setpoint values than the top, deselect the **Top and Bottom Setpoint are the same** checkbox.

The bottom row of fields becomes editable (white).

5. Enter new temperature values in the bottom row fields.

6. Type in a value in the **Conveyor Speed** field.

7. Click the next arrow button to advance to the thermocouple attachment phase of running a profile.

Note: If the zone lengths of your oven have been changed since you first characterized the unit in the software, or you just want to check the current settings, use the **Zone Length** button to display the **Verify the Length of Each Zone and the Minimum and Maximum Setpoint Temperatures** screen.
Attaching thermocouples

Thermocouples (TCs), attached to solder joints or other important sites on the board, directly measure the temperature at the point that the TC bead is in contact with the PCB. The TC measurements are collected by the profiler and the software to create thermal profiles.

As part of the running a profile process, the software displays illustrations that show how to attach thermocouples using aluminum tape. These images also appear in the procedures that follow.

The system works with two kinds of TCs—standard TCs and the air TC. Standard TCs record the temperature data for various sites on the board. The air TC gets specific positioning because its temperature triggers the start of the profile data processing, aids with TC shifting, and improves the prediction capabilities of the software.

Attaching the Air TC

There are two important considerations regarding the Air TC:

1. It must be attached at the leading edge of the board, extending one inch (25 mm) in front of the leading edge of the board.

2. It MUST be plugged into channel 1 on the profiler.

Attaching standard TCs

Attach the standard TCs at selected sites on the board, and plug them into the remaining connectors on the profiler. Order is not important, unless you plan on labeling where each TC is attached.

When selecting a position for the standard TCs, you want to measure points on the product that represent the mass-range of the product. Select at least one position that is a high mass (large component) area of the board and at least one position that is a low-mass (small component) area of the board. If you can develop an acceptable profile for the low and high-mass areas of the board, you can process the other areas of the board within the same parameters.
Selecting thermocouples for the profile

Include thermocouple (TC) labels (20 char. Max) – Checking this will display a field below each TC that is checked. Up to 20 characters can be used to describe the placement or location of that TC.

TC number check box – Place a check next to each TC channel that is going to be used for this profile. TC number 1 is always used for the AIR TC. You must have at least one other TC being used.

Note: If the selected Process Window has Separate Specs for TCs, then you must return to the Process Window-Edit Specs screen in order select/deselect TCs or change their text labels.

Live reading – When the profiler is on and either plugged into the download cable for data logging or transmitting to the receiver which is plugged in, you will see live temperature updates for the TCs plugged into the profiler. The TC checkbox must be checked as well to get the temperature updates. If you do not see live temperature readings recheck all the cable and or computer connections.

Battery voltage – This displays a live reading of the profiler battery voltage. The software will recognize if your battery voltage is too low to complete the profile and not allow you to start a profile until the batteries have been replaced.

Profiler internal temperature – This displays the internal temperature of the profiler. If the temperature is too high to complete the profile and stay under the maximum temperature rating for the unit, it will not allow you to start the profile. You must wait until the profiler is cool enough. The software will let you know what temperature the profiler should drop below.
Starting the profile

Before you can start the profile run, you need to make sure your profiler is powered on and ready and that the oven temperature has stabilized. Depending on the settings in the profiler and in the software, you may have to initialize the profiler at times. The software lets you know when this is necessary. To initialize, connect the communication cable to the profiler, and click OK when the *initialization successful* message appears.

To start the profile:

1. On the Select the Thermocouples for the profile screen, click on the Start Profile button. *The software asks if the oven control TCs are within 2 degrees of the setpoint value:*

 ![Image of the question prompt]

 Are the oven control thermocouples within 2 degrees of the setpoint temperature?

 - Yes
 - No

2. Click the appropriate response button:

 If you click YES the next screen in the profile sequence appears, prompting you to place the profiler and board into the oven:

 ![Image of profiler and board inside oven]

 If you click NO, the software asks if the stabilizing oven is getting closer to 2 degree limit:

 ![Image of the second question prompt]

 For repeatable profiles and accurate predictions the control thermocouple in each zone must be within 2.0 degree(s) of the setpoint temperature.

 Are the oven control thermocouples still getting closer to the setpoint temperature?

 - Yes
 - No

 - **Click YES** to wait for the oven to stabilize within the 2-degree limit and continue profiling.
 - **Click NO** if the oven has stabilized but is still not within two degrees of the setpoint values. In the oven software, change the setpoint values to the temperatures the control thermocouples are currently reading. The software will recalculate the zone separation capability. Clicking OK on the next screen allows the Navigator to suggest a new recipe that your oven will more likely be able to control to. From there, you will step through running the profile. Change the values, return to the main screen, and start the profile sequence over.

IMPORTANT NOTE: All profilers have a maximum operating temperature that, to avoid damage, **should never be exceeded.** See the product datasheet for temperature tolerance information.
Viewing the live profile graph

The Live Graph screen shows the real-time plot of the product going through the oven. This will only appear for the profiler-RF models or for Temp vs. Time profiles. During the live profile all of the tabs on the screen are inaccessible. The only action that you can take at this point is to cancel the profile by clicking on the RED X button or the Profile Stop button for Temp vs. Time.

The Live Profile Graph display will remain on your screen until the profiler has achieved the trigger temperature that determines the profile end.

Profile status
The bottom part of the screen will keep you apprised of the progress of the profile in reference to the profiler hardware status. Status messages include:

- Waiting for the Air TC to exceed the start trigger temperature.
- Profile started- Waiting for the Air TC to exceed the midpoint trigger temperature.
- Profile will stop when all thermocouples drop below 80 Celsius.
- Profiler currently retransmitting.
- Profiler retransmission successful!
During the live profile:

- The live profile is plotted on the graph. (Profilers with wireless only.)
- The current temperatures for each thermocouple and the delta between them are displayed in a small window in the upper-left hand corner of the profile graph. The elapsed time is also displayed, profiler transmitter models only.
- The current oven temperature setpoints and conveyor speed for this profile is displayed beneath the Statistics table.

Profile retransmission

While a profiler with wireless capability transmits the live profile data to the software; it simultaneously stores the profile data in its memory. Once the profiler detects that all of the thermocouples have cooled below the profile-end trigger value, it will begin retransmitting the profile data to the software via the profiler Base Station. When retransmission begins, the profiler will send the profile in data packets. The retransmission status is displayed at the bottom of the screen. See Figure 13.

![Figure 13: Retransmission of Profile Data, RF Profilers only](image)

When all the data packets have been received, the software will display a message asking you to turn the profiler off, choose OK. **Failing to turn the profiler off will drain the batteries.**

Next, the software will automatically analyze the profile data and presents the profile and statistics. If you purchased the Navigator option, the predicted oven settings will be displayed as well. See Figure 14 through Figure 17.
Viewing the profile and statistics

At the top of the screen is the temperature plot of the TCs, in the center of the screen is the statistical table, and the bottom of the screen shows the recipe information – setpoints and conveyor speed settings.
Manual profile prediction

The software has automatic (Navigator), and Manual Prediction capabilities. The standard software installation includes Manual Prediction capabilities.

Manual Prediction gives you the flexibility to easily predict changes to the oven settings (temperature settings, conveyor speed), and view the results without having to spend the time actually running the profile. This feature is very helpful to minimizing the time spent fine tuning or developing a thermal profile.

<table>
<thead>
<tr>
<th></th>
<th>P.W.I.</th>
<th>inch/min</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Top</td>
<td>47%</td>
<td>49.2</td>
<td>220.0</td>
<td>260.0</td>
<td>290.0</td>
</tr>
<tr>
<td>Original Bottom</td>
<td></td>
<td></td>
<td>220.0</td>
<td>260.0</td>
<td>260.0</td>
</tr>
<tr>
<td>Predicted Top</td>
<td>47%</td>
<td>49.2</td>
<td>220.0</td>
<td>260.0</td>
<td>290.0</td>
</tr>
<tr>
<td>Predicted Bottom</td>
<td></td>
<td></td>
<td>220.0</td>
<td>260.0</td>
<td>260.0</td>
</tr>
</tbody>
</table>

Figure 18: Original/Predicted setpoints – Manual Prediction

<table>
<thead>
<tr>
<th></th>
<th>P.W.I.</th>
<th>inch/min</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Top</td>
<td>47%</td>
<td>49.2</td>
<td>220.0</td>
<td>260.0</td>
<td>290.0</td>
</tr>
<tr>
<td>Original Bottom</td>
<td></td>
<td></td>
<td>220.0</td>
<td>260.0</td>
<td>260.0</td>
</tr>
<tr>
<td>Predicted Top</td>
<td>26%</td>
<td>49.2</td>
<td>220.7</td>
<td>256.1</td>
<td>284.5</td>
</tr>
<tr>
<td>Predicted Bottom</td>
<td></td>
<td></td>
<td>220.7</td>
<td>256.1</td>
<td>254.5</td>
</tr>
</tbody>
</table>

Figure 19: Original/Predicted setpoints – Navigator (Optional)

This is an example of how the software (standard and with Navigator) lists the PWI, and oven settings for the profile. This table is divided into the original section (top), and the Predicted section (bottom). See Figure 18.

The original values represent the oven settings at the time the profile was run. The predicted values represent the prediction results as determined by the Navigator software. See Figure 19.

If you purchased the Navigator software option, the software will automatically generate results that are best suited for the selected Process Window. In the event you wish to modify the prediction results of the Navigator, you can do so. See Figure 20.

To predict changes to the oven settings, or modify the Navigator prediction results, click on the zone you wish to change. In the example below, zone 1 has been selected. See Figure 20.

<table>
<thead>
<tr>
<th></th>
<th>P.W.I.</th>
<th>inch/min</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Top</td>
<td>47%</td>
<td>49.2</td>
<td>220.0</td>
<td>260.0</td>
<td>290.0</td>
</tr>
<tr>
<td>Original Bottom</td>
<td></td>
<td></td>
<td>220.0</td>
<td>260.0</td>
<td>260.0</td>
</tr>
<tr>
<td>Predicted Top</td>
<td>47%</td>
<td>49.2</td>
<td>230.0</td>
<td>260.0</td>
<td>290.0</td>
</tr>
<tr>
<td>Predicted Bottom</td>
<td></td>
<td></td>
<td>220.0</td>
<td>260.0</td>
<td>260.0</td>
</tr>
</tbody>
</table>

Figure 20

Type the new temperature setting, and then press Enter. The Navigator will predict the results of that change, and then automatically update the PWI, predicted Statistics, and the profile graph. The new predicted results will be displayed on the graph in a dotted-line format. This format enables you to easily determine the difference between the original and predicted profiles. See Figure 21.
Analyzing the profile graph display

The PWI for the profile is displayed in the bottom-left corner of this screen. If the measured PWI is below 100%, the value will be displayed in green. See Figure 21. If the measured PWI is 100% or higher, the value will be displayed in red. See Figure 22.

Note: This display method enables you to easily identify whether the profile is in- or out-of-spec.
Adjusting the appearance of the profile graph

The Graph Controller screen lets you modify the appearance of the profile graph. To open the Graph Controller, click on the TCs and Settings column header in the statistics table.

Auto Scale – The Auto Scale feature automatically adjusts the X and Y axis scales to fit all of the data in the profile graph. When the feature is disabled, you must input the scale settings manually.

TCs – The TCs section lists the thermocouples used for the profile. In the event that you wish to view the profile without one or more thermocouples, you can deselect individual thermocouples, or deselect the All check box, and choose only the thermocouples you wish to view. In the event a single, or multiple thermocouples become disconnected from the product during the profile, you can deselect the affected thermocouple(s). The software will recalculate the PWI and update the profile statistics based on the remaining thermocouples selected. You must select at least one product thermocouple.

Grid – Enables/disables the view of the X and Y Axis scales.

Reference lines – These lines represent any temperatures referenced in the selected Process Window. When you use separate thermocouple specs, the Reference Lines check box is disabled, and no lines appear on the graph.

Zone lines – Enables the view for the oven zone lines on the profile graph.

Predicted TCs only – Removes the original TC data form view, displaying only the prediction profile plot

Zero decimal – When using the Pointer tool, this setting enables or disables the decimal display. When unchecked, the software will display one decimal point.

Internal temp – Enables the view of the profiler’s internal temperature profile plot on the graph.

Display Detailed PWI – Disables the PWI calculations for the individual statistics, and only shows the “overall” PWI.

Extra Cooling Slope – Enables the display of multiple Cooling Slope calculations at specified intervals.

Display of Pointers – If you choose to add pointers to the graph, this area allows you to select which calculations will be displayed in the Pointer Slopes tab of the statistics table.
Analyzing profile data with the graph option tools

The Graph Option menu includes tools to let you analyze the profile data in closer detail. To view the menu (Figure 24), right-click anywhere within the profile graph area.

Figure 24: Graph Options

Viewing temperature data at selected points

The Examine option lets you use the mouse pointer to display temperature values at any selected point along a graph line. Wherever the pointer is moved across the profile, the data shown in Figure 25 appears:

- The first column is the actual temperature for each TC.
- The second column is the temperature of the predicted profile data – based on setpoint or belt speed changes.
- The Delta T for both actual and predicted TC data.
- The Time during the profile at which the pointer is placed

To disable the Examine view, right-click on the graph and deselect Examine.

Enlarging graph details with the zoom option

You can get an enlarged view of selected areas of the profile display. Right-click on the graph to display the Graph Option Menu, then select the Zoom option. See Figure 26. A chart appears on the left side of the graph. See Figure 27.

Figure 25: Graph Pointer

Figure 26: Zoom Option

Figure 27: Graph Option Menu - Zoom
Using your mouse pointer, click and drag the view window in the graph over the area you wish to enlarge.

![Graph Option Menu - Zoom](image)

To disable the Zoom view, right-click on the graph, and deselect the option.

Move TC line

The Move TC line feature allows the user to manually move the thermocouple plot on the profile graph. This is used to fine-tune the profile or make corrections in the event the software did not properly display the plot. See Figure 29.

Select the thermocouple you wish to move and then click and drag the highlighted plot and move it to the desired location on the profile graph. See Figure 30.
Move Zone line

The Move Zone line feature allows the user to manually move the zone separation lines on the profile graph. This is used to fine-tune the profile or make corrections in the event the software did not properly display the zones.

Zone Resize

Select to move the first line (zone beginning) or the last line (Zone ending) and then click and drag it to the desired location on the profile graph. See Figure 33.

Reset

The Reset feature will reset the profile and undo any changes you have made to the graph using the Graph Option Menu. Select the TC Line, or Zone Line option. See Figure 34.

Move Last Zone Line

For special profiling conditions, such as on vacuum reflow ovens, this tool lets you extend out the last zone size, better visually representing the size of the vacuum zone.

Pointer/Slopes

This tool lets you place up to six (6) pointers on the graph, which can be used for calculating/highlighting data in specific areas of the profile. Use the Remove All Pointer/Slopes tool to clear all pointers from the graph.
Statistics Table

<table>
<thead>
<tr>
<th>Profile</th>
<th>Pointer</th>
<th>Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc and Settings</td>
<td>Max Rising Slope</td>
<td>Soak Time 140-170°C</td>
</tr>
<tr>
<td>T<sub>C</sub></td>
<td>5.70</td>
<td>78.63</td>
</tr>
<tr>
<td>T<sub>C</sub></td>
<td>1.90</td>
<td>61.48</td>
</tr>
<tr>
<td>T<sub>C</sub></td>
<td>1.76</td>
<td>1.11</td>
</tr>
<tr>
<td>Delta</td>
<td>0.14</td>
<td>6.68</td>
</tr>
</tbody>
</table>

Profile Tab

The statistics table is displayed in the center of the graph screen and lists a variety data, depending on which tab is selected, for the current profile being shown. It will list any measured value, as well as the corresponding PWI value (where applicable).

Profile Tab – Displays any statistical value selected during the Process Window setup. Any statistic displayed in green is within the specification limits. Any statistic in red is outside of the spec limits defined.

Pointer Slopes Tab – This tab will display the calculations for any Pointers that were placed on the graph. It can display the temperature at each pointer location, as well as the Slope, Time, and Peak temperature between any two Pointers. Right click on the graph and click Pointer/Slopes then left click to add a pointer on the plot. Open the Graph Controller menu to select which data to show in this table.

Automatic calculation of Delta T + Delta (or range) for all stats
The software will automatically calculate, and display in the statistical chart, the Delta for both the original and predicted profile data for all TCs for all Statistics. This is the range of the highest to the lowest value for any given specification. This information is strictly being displayed and is not factored in to the PWI value and is not used in any predictive calculations.
Editing oven recipes and TC labels

Sometimes after you have run a profile, you might need to update various values associated with it such as:

- Oven name
- Conveyor speed
- Zone temperature setpoints
- Labels originally assigned to individual TCs

The software provides an editor screen for this purpose.

To display and use the TC and Recipe Editor screen:

1. Display the profile graph screen (any tab view).

 ![Profile graph screen]

2. Right click anywhere within the statistics table at the bottom of the screen.

 ![Statistics table]

 The TC and Recipe Editor screen appears:

 ![TC and Recipe Editor screen]

3. Place the cursor in any field and type in new values.

 Note: The conveyor speed and zone setpoint fields only allow numerical values:

 - Zone setpoint values must be between 70 and 350°F (158 and 662°F)
 - Conveyor speed values must be between 5.0 and 100.0 inches (12.7 and 254.0 cm)

4. Click the check button to save the changes.
Profile screen buttons

There are four buttons at the bottom of the profile screen:

- **Edit/Define Process Window** – Choose this button to either view or edit the process specification(s) for the product used in this profile.

- **Copy to clipboard** – Choose this button to copy the profile data to the windows clipboard. You can then paste the data to a different application.

- **Print** – Choose this button to print a copy of the profile that is currently on your screen.

- **Main menu** – When finished viewing or analyzing the profile, select this button to either run another profile with this product or return to the main menu. You will be returned to the Profile Explorer if the profile was opened from there.
Upon exiting the graph screen

Do you want to run another profile with this product? See Figure 35.

If you select No, you will be returned to the main screen or the Profile Explorer if the profile was originally opened from there.

If you select Yes, you will need to choose from the Original or Predicted recipe settings. See Figure 36.

Original – The same recipe settings used when this profile was originally run.

Predicted - The recipe settings as predicted by the Navigator option, or a standard prediction manually input by you.

For both the original and predicted recipe settings, the software will automatically send the selected recipe information to the oven controller. If there is no communication between the software and the Oven controller, the software will display a dialog box showing the recipe information. You must manually enter this recipe information in the oven control software. See Figure 37.

The software will automatically apply the changes to the Run a Profile – Enter Setpoints screen. You will exit to the Run a Profile – Enter Setpoints screen. If you are running on the oven controller PC, and the oven is compatible with the software, the oven recipe will automatically be updated.
Saving changes to the profile:
Any changes to the Description Notes or the Process Window can be saved with the profile. See Figure 38. This will permanently update this profile with the changes. Changes to the Process Window saved here only save the changes with the profile. To save the changes to Process Window file see next dialog box. See Figure 39.

Saving changes to the Process Window:
If you have made changes to the Process Window from the Graph screen you can save these changes when you exit the graph screen. The Process Window will permanently have these changes whenever it is used to profile from this point forward.

The software will take you to the Edit Process Window screen in order to save the changes that you have made.

The first dialog – “Do you want to run a profile with this product?” will appear each time you exit the graph screen. Click on No if you do not wish to profile.

You will be sent back to the main menu if you had just completed running a profile. If you opened the profile from the Profile Explorer you will be returned to the Profile Explorer. The other two dialogs will only appear if changes are made to the Description notes or Process Window.
Using Profile Explorer

The Profile Explorer is a data file management tool that creates a folder for each unique product you name when profiling. The software gives the folder the product name, and under that folder, all the profiles for that product are saved. See Figure 40.

- The list of product folders is in the upper left of the Profile Explorer. Click on a folder to display the profiles in the profile section at the bottom.
- The profile section can be sorted by click on any of the column headers. Single clicking on a profile will display the Profile Description in the upper-Right corner.
- Double clicking on a profile will display the graph and statistics for that profile.
- Clicking on the Display Graph… button will also display the profile.

Note: The default data path can be changed, see page 119 for details.
Understanding the command buttons

Save button – Allows you to save a copy of a profile to another folder or to an external drive.

Delete button (trashcan) – Allows you to delete the selected profile.

Display profile button – Displays the profile for viewing or analysis.

Main menu button – In the lower right corner returns you to the Main Menu.

Optional Buttons (Only displayed if software key is detected)

Product dimensions button (Ruler) – For Auto-Focus users, allows you to edit the length, width, and weight of the selected product. Whenever the product dimensions are changed in the Profile Explorer, all the profiles in the directory will be updated automatically.

MVP - Virtual profile – Select this button to run a Virtual Profile using the MVP profiling fixture.

SPC – display charts – Select this button to display the SPC charts for the selected profiles in the SPC Column.

Comparing multiple profiles

The Profiler Explorer screen can display profile data in an overlay mode that lets you simultaneously compare multiple profiles in a single chart. Overlay mode lets you combine the plotted data from up to three profiles into a single display file that can be saved for future reference.

To create an overlay profile:

1. In the lower-left corner of the Profile Explorer screen, click the **Overlay** radio button to switch the Profile Mode from Standard.

 Overlay Mode option buttons appear to the right, a Profile Overlay selection column appears in the profile list, and the Overlay icon joins the other command buttons along the bottom of the screen.
2. Click the checkboxes to select the profiles that you want to overlay, choosing the last selected as the **target** profile.

Note: As shown below, the target profile appears highlighted in blue. The overlay display compares the other selected profiles against the target. View target profile information in the Profile Overlay Graph Controller (Figure 43).

![Figure 41: Profiler Explorer – Overlay Option](image)

3. Click the Overlay icon.

The data for the selected profiles appear plotted in a single chart with statistics displayed in a table as shown below:
The curves for each TC are shown in different colors while distinct shapes (square, circle, and triangle) indicate the different profiles in the overlay view.

4. When finished analyzing the data, click the Profile Explorer button. A message appears, prompting you to save the overlay profile:

5. Click Yes.

Note: After saving overlay profiles you can display them exclusively by selecting the Show Saved Overlay Profiles option on the Overlay Mode panel.

Note: While viewing multiple profiles, the prediction capabilities are disabled.
Adjusting the appearance of the overlay graph

The Profile Overlay Graph Controller screen lets you modify the view of the multiple profile graph display. To open the screen, click on the TCs column header in the Process Window data table. The screen’s features are described below:

Auto Scale – The Auto Scale feature automatically adjusts the X and Y axis scales to fit all of the data in the profile graph. When the Auto Scale feature is disabled, the user must manually input the minimum and maximum scale settings for the X and Y axis scale of the profile graph.

Target Profile – Displays the profile information for the profile selected as the Target Profile. The Target Profile is the highlighted profile when selecting multiple profiles from the Profile Explorer Main Screen.

List Compare Profiles – Displays the profile information for the profiles that have been selected. Scroll to view the information. Deselect the check box to remove the profile from the graph.

Selecting thermocouples to view
The TCs section is a list of the thermocouples used for the profile. By selecting *All* you are selecting that all the thermocouples used for the original profile will be displayed on the profile graph. In the event that you wish to view the profile without a particular or multiple thermocouples, you can deselect individual thermocouples, or deselect the All check box, and choose only the thermocouples you wish to view.

Deselecting thermocouples
You can deselect thermocouple(s). The software will recalculate the PWI and update the profile statistics based on the remaining thermocouples selected. You must select at least one product thermocouple.

Grid – Enables/disables the view of the X and Y-Axis scales.

Reference lines – Clicking this check box enables the view of Reference Lines displayed on the profile graph. These lines represent any temperatures referenced in the selected Process Window. When you use separate thermocouple specs, the Reference Lines check box is disabled, and no lines appear on the graph.

Zone Lines – Enables the view for the furnace zone lines on the profile graph.

Zero Decimal – When viewing the Pointer tool, this setting enables or disables the decimal display. When unchecked, the software will display one decimal point.

Internal Temp – Enables the view of the profilers’ internal temperature profile plot on the graph.

Number of seconds to calculate slope over – User defined field for entering the time in seconds to calculate the Slope values for the Pointer/Slopes feature.
Inserting software data files from an outside source

Software data files can be sent or received via email. To view them using the KIC software, copy them to the **Profiling Software 2G\Profiles** folder using Windows Explorer.

The next time you enter the Profile Explorer screen, the software will automatically create folders for those profiles based on the profile name and move the profiles to the correct folders.
Printing profile display screens

The software will print profiles only from within the profile display screens. There are two print formats available. Print Format #1 is the default.

Select the print button at the bottom of the screen to print a profile. A print dialog box will appear. See Figure 44.

Print Format #1- Portrait

![Print Options Screen – Print Format #1 - Portrait](image)

Enter the “Company Name” and “Site ID.” Check the items you wish to include on your profile printout.
Pass/Fail – Adds additional notation on printout to designate if the PWI is within user specified value.
Press the Print button to print the report.
Press the Print Preview Button to display a preview of the report. See Figure 45.

Print Format # 1 Print Preview

![Sample Print Preview for Report Format #1](image)

Includes the Company Name, Site ID, Date, Statistics, Profile Information, Setpoints, Profile Graph, Statistic Limits and Profile Description.
Print Format #2- Landscape

Enter the “Company Name” and “Engineer”. Check the items you wish to include on your profile printout. See Figure 46.

Press the Print button to print the report.
Press the Print preview button to display a preview of the report. See Figure 47.
Pass/Fail – Adds additional notation on printout to designate if the PWI is within user specified value.
Memo Box – Enables/Disables a Memo Box area for Draft, Review and Approval Signatures and Dates.
Image/Logo – Enables/Disables the Image/Logo display area
Image/Logo Path – When Image/Logo is enabled, specify the path to any BMP image file that you want to appear in the Image/Logo display area on the report.

Print Format # 2 Print Preview

Note: Optionally, you can print the contents of any screen in the software by pressing F9 on your keyboard. The F9 function will not work while viewing the Profile Printout Setup dialog box.
Profiling with a wave solder machine

KIC profilers can be used to measure thermal profiles in a wave solder machine. The process is very similar to profiling a solder reflow oven. The software guides you through the process.

Note: KIC does not recommend installing this software on an oven controller PC if you plan to run wave solder profiles.

Wave Surfer profiling fixture

Wave Surfer is a wave solder machine accessory specifically designed for use with the KIC profilers. See Figure 48.

The Wave Surfer has embedded thermocouples that give wave specific data including conveyor speed each time you run it through your wave solder machine.

Wave Surfer users can collect profile and wave data and using the Navigator and SPC option(s) to optimize their process.

The Wave Surfer simplifies wave soldering profiling. The device is used to routinely check the wave machine. Using the Process Window Index, the machines performance is measured each time a pass is made based on your selected Process Window.
Wave solder profiling

This section will outline the steps necessary to setup and run a wave solder profile using your profiler and the software. This section is written assuming you have a basic understanding of the software and its functions before attempting to run profiles on a wave solder machine.

Global Preferences

Unit of measure – Wave solder machines generally use the Fahrenheit scale for preheat and solder pot temperature measurements. If necessary change the temperature units to Fahrenheit.

Product start temperature – This temperature setting can be changed. It is up to you to determine what temperature setting will work best for their process.

Maximum product temperature at start of profile – This setting will determine the maximum product temperature before the software will allow you to start a profile. If any of the thermocouples connected to the profiler or your product measure above this setting, the software will not allow you to proceed. You will be prompted with a message stating that one of the selected TCs is not reading valid temperatures. You will have to wait until the thermocouple or the object your thermocouples are connected to cools below this temperature setting before the software will allow you to proceed. This software feature helps you to collect consistent profile data by always beginning the profile with the same or nearly the same product temperatures.

The software also uses this setting to determine the profile start - temperature trigger value. The profile start–temperature trigger is always set 2ºC above the “Maximum product temperature at start of profile”. If the maximum product temperature at start of profile is set to 31ºC, the profile start–temperature trigger is automatically set to 33ºC, which is the default setting. When the Air TC reads above 33ºC, the profile will begin.

Process Window

The software does not contain a list of fluxes or materials used specifically for wave soldering; only a list of solder pastes generally associated with solder reflow. Users defining a Process Window for a wave solder process may have to define their own specifications.

Select the line item at the top of the list- Define your own spec from the Solder paste Menu. You will be automatically directed to the Edit Specs window where you can enter your unique process specifications. Enter your process specifications, when finished; select the Green check button.

Including the wave portion of the profile

Select the Wave checkbox to activate the wave specific process specs. When the Wave checkbox is checked the software will display profile statistics for the wave portion of the profile when viewing the completed or saved profile. See Figure 49.
If you have followed the above directions, you should be looking at the Process Window screen. If you are satisfied with the settings and wish to apply these specifications to all the thermocouples used, type a descriptive name in the top field and select the green check button. Select Yes when prompted to save the Process Window file.

If you want to use different specifications for one or more thermocouples, you can do so.

Note: When running wave solder profiles with the wave on, the profilers use two wave TCs in addition to the Air TC to collect wave specific data. The Wave TCs will connect to channels #2 and 3 on the profiler. See the “Connecting Wave TCs” section of this manual for details, page 51.
Running a wave solder profile

Figure 50: Run a Profile Screen

- Select your Product Name from the list. If you are profiling a new product type the name.
- Select your Process Window from the list.
- Select your process type from the Applications list. The software profile and prediction results are based on this setting. It is imperative that you select the correct Application type. Failing to do so can affect the profile results. For wave solder select to run the profile with the wave On or Off using extra thermocouples to measure wave characteristics such as Dwell Time, Parallelism, and solder temperature. Select the Wave Profile option to run a profile without the wave characteristics data.
 - If you select Wave On, the software will utilize two wave TCs in addition to the Air TC. The Wave TCs will measure: wave Dwell Time and Parallelism when profiling with the wave on. The Air TC must be positioned to run through the wave(s).
 - If you select Wave On, the software will display preheat and wave profile data, but offer prediction results only for the pre-heat section of the profile. The Air TC must be positioned to run through the wave(s).
 - If you select Wave Off, the software will not display wave characteristics data. The Air TC must be positioned to NOT run through the wave(s).
 - If you select Wave Profile, The Air TC must be positioned to run through the wave(s).
 - If you purchased the Wave Surfer select Wave Surfer from the Applications list.
- Select the Sample Rate from the drop-down list.
- Select your oven name from the list. If you’re profiling on a new oven or machine, type the name in the “Oven Name” field.
- Optionally you can type notes or descriptions for this profile in the “Profile Description” field. These notes will be stored with the profile and can be edited later if necessary.
- When you are finished with your selection, choose the Forward Arrow button to proceed. See Figure 50.
Zone length, minimum and maximum temperature settings

If you typed a new oven name, the software also requires you to enter the length of each zone as well as the minimum and maximum zone temperature settings. This information will help the software narrow the possibilities of prediction results that your oven can actually achieve. See Figure 51.

For wave solder processes you are required to enter the distance from the end of the last preheat zone to the beginning of the main wave. Enter this value in the field labeled Distance from end of last preheat zone to the main wave.

Once you have finished entering this information select the Forward Arrow button to continue.

Customize Wave Solder Machine Configuration

Many wave solder machines have non-uniform zone configurations – such as different quantities of top and bottom preheaters. If desired, you have the ability to specify the exact layout of your machine.

To enable this function, exit the software and run the PSConfig.exe utility program from the C:\Profiling Software 2G directory.

Select the “Use Wave Machine Configuration Tab” and then OK. A message will display alerting you that the configuration utility will need to be restarted. Choose OK.
Restart the PSConfig.exe and a new “Machine Configuration” tab will appear.

Wave Solder Machine Name: Enter a new name for your wave solder machine or select an existing wave solder machine name to modify the configuration.

Number of Preheaters/Waves: For preheaters, enter the maximum number of zones (for the Top or Bottom). So, if there are 4 bottom preheaters and 1 top, enter 4.

Zone Order: Allows you to define the zone numbering display in the software to match your machine layout.

Wave Label: Specifies the name of each wave in the profile display.

TOP/BOTTOM: Select via checkbox which zones have top and/or bottom preheaters. When enabled, you can also define the units for the temperature setpoint – C, F, or %.

Top Preheater/Bottom Preheater: Enter the length of each of the preheaters, as well as the Minimum and Maximum allowable setpoint in that zone.

Distance from end of last preheat zone to the main wave: Enter distance to the beginning of the actual solder wave.

Conveyor Speed Units/Zone Measurement Units: Allows you to specify how the information is entered.

Click **Apply** or **OK** to save your changes.

Any wave solder machine name that is configured within this utility will show up in the “Oven Name” list on the first RUN A PROFILE screen.

NOTE: When the Wave Machine Configuration tab is enabled, you can only create/define new Wave Solder machine configurations through this utility. If you try to enter a new Wave Solder machine name in the oven drop-down menu on the Run A Profile screen, a message will display letting you know to use this configuration tab.
Entering temperature setpoints and conveyor speed

If you typed a new oven name, the software requires you to enter the number of heated zones or pre-heat zones in your wave solder machine. See Figure 52.

If your process requires different top and bottom setpoints, deselect the check box labeled Top and Bottom setpoints are the same. This will allow you to enter different values for top and bottom heaters in each zone. If your oven has top and bottom heaters, but not in all of the heated zones, just enter the same value as the actual setpoint in that zone for both the top and bottom setting.

This is also where you will enter the temperature settings for each zone or pre-heater in your wave solder machine and the conveyor speed setting. In the field marked Solder temperature enter the setting for the solder pot temperature from your wave solder machine.

When you have finished entering this information select the Forward Arrow button to continue.

If you used the Machine Configuration Tab to define the layout of your wave solder machine, the recipe screen will represent those settings.

Connecting the Air TC

The next screen shows directions for attaching the Air TC to your product. It is important to follow these instructions. See Figure 53.

The Air TC starts and stops the profile automatically, measures the oven, and provides useful profile information.

In certain processes it may be beneficial to wrap the end of the Air TC with tape to give it more surface area. KIC recommends wrapping the Air TC when profiling:

- Wave Solder.
- Anytime IR heat is present.
Wave Surfer

Wave Surfer users connect the designated thermocouples to the corresponding channels on the profiler.

Make sure the retainers holding the profiler are in place and secure. See Figure 54. If any of the embedded thermocouples are damaged or show signs of wear replace them.

Note: In addition to the instructions given, it is very important that you position the “Air TC” so that it touches the wave(s). The “Air TC must pass through the wave in order to provide accurate profile results. Of course if you are profiling a Wave Solder machine with the wave off, the Air TC position is not critical to the profile results.

Select the Forward Arrow button to continue.

Connecting wave TCs

The next screen will depict thermocouple attachment for wave solder profiling with the wave on. The software utilizes two Wave TCs in addition to the Air TC to collect wave specific data. See Figure 55.

One Wave TC is placed on the right side of the board and one on the left side near the leading edge of the profile board.

Note: KIC recommends using high temperature solder to connect both Wave TCs.

The wave TCs will measure Wave Dwell Time and Parallelism when profiling a wave solder machine with the wave on.

Select the Forward Arrow button to continue.
The next screen will depict the placement of the Wave TCs and instructs what slot/channel of the profiler to connect each Wave TC to. See Figure 56.

It is very important to follow these directions.

- Plug the Left-Wave TC into the #2 slot of the profiler.
- Plug the Right-Wave TC into the #3 slot of the profiler.

When you have properly connected your Wave TCs, select the Forward Arrow button to proceed.

Connecting product TCs

The next screen will depict placement of the thermocouples used for profiling the product (Product TCs). See Figure 57.

Product TCs are connected to the product in key locations across the product. The selected locations need represent the highest and lowest-mass areas of the product or even specific temperature sensitive components.

Once you have connected your Product TCs to your product, connect them to the profiler starting with slot or TC #4.

Select the Forward Arrow button to continue.
Selecting the thermocouples and starting a profile

This screen displays the live readings from the profiler for all thermocouples selected, as long as the hardware is properly connected. See Figure 58. Make sure your profiler has a fresh battery and is powered on.

Selecting thermocouples - To select a thermocouple, check the box next to the thermocouple number. The live temperature is displayed beneath each thermocouple label.

Thermocouple labels - Optionally you can check the box to include thermocouple labels. When this box is checked you can type a text label for each selected thermocouple. 20 character maximum.

Distance from the Air TC – Measure and enter the distance from the Air TC to each thermocouple used, including the Wave TCs.

Select the Help Measurement (Tape Measure Help) button for an example of how to correctly measure the distance from the Air TC. See Figure 59.
Once you have selected your thermocouples, you are ready to profile.

Make sure your profiler hardware is properly connected to the computer. You will be able to view the live readings for each selected thermocouple. If you do not see the live readings, the profiler hardware is not connected properly. Recheck the cable connections.

Select the Start Profile (green traffic light) button to begin profiling.

The software requires that the selected thermocouples read valid temperatures below the maximum product temperature at start of profile as set in the Global Preferences screen. The default setting is 31ºC/88ºF.

If any of the selected thermocouples read too high, the following message Figure 60 appears:

![Figure 60](image)

When the software detects valid temperatures for all of the selected thermocouples, it will allow you to start the profile.

Note: In certain situations the software may display other messages with directions in addition to what is outlined below. Read these messages and follow these directions carefully.

The software will ask you to verify the oven is stable. See Figure 61.

- **Yes** – The software will prompt you to put the profiler and the board in to the oven.
- **No** – The software will ask if the oven is getting closer to the setpoints. See Figure 62.

- **Yes** – The software will return to previous screen to wait until the oven is ready, oven setpoints within 2.0ºC/3.6ºF.
- **No** – The software will ask you to change the oven setpoint temperatures to the temperatures that the control thermocouples are currently reading, and then press OK.

- The software will have you enter the new setpoints and then recalculate the capability of your oven. Then continue forward through the Thermocouple Attachment screens until you get to the Select thermocouples screen. Then select the Start Profile button (Green traffic light) to start the profile, once the oven has stabilized.

If you selected yes, the software shows a picture of and instructs you to put the profiler and the board into the wave machine, and then select the Arrow Forward button. Next, the software will display the Live Profile graph.
Viewing the live profile graph

The live profile graph display only appears when you’re using a profiler in wireless mode—not as a datalogger. The live profile graph display will show the profile plot on the graph for the current profile that is running. See Figure 63.

While the profiler is in the oven, and until the profile has ended, the software will continue to display the live profile graph. The other tabs at the top of the screen; Description, and Optimization are inaccessible. See Figure 63.

- The live profile is plotted on the graph.
- The current temperatures for each thermocouple and the Delta between them are displayed in a small window in the upper-left hand corner of the profile graph. The elapsed time is also displayed.
- The current oven temperature setpoints and conveyor speed for this profile is displayed beneath the statistics table.
- The profile status is continually updated throughout the profile. Wireless models only.

The Live profile graph display will remain on your screen until the profiler has achieved the trigger temperature that determines the profile end.
Profile retransmission

Retransmission is only available in profilers with RF transmit capability.

While the profiler transmits the live profile data to the profiler’s Base Station; it simultaneously stores the profile data in its memory.

Once the profiler detects that all of the thermocouples have cooled below the profile-end trigger temperature, it will begin retransmitting the profile data to the software via RF. The profiler will send the profile in data packets. The retransmission status is displayed at the bottom of the screen. See Figure 64.

![Figure 64: Profiler status – RF models](image)

When all of the data packets have been received, the software will display a message asking you to turn the profiler off, choose OK. **Failing to turn your profiler off will drain the battery.**

Next, the software automatically analyzes the profile data and presents the profile and profile statistics. If you purchased the Navigator option, the predicted oven settings will be displayed as well.

If the Air TC or either Wave TC does not touch the wave(s), the software will display an error message: See Figure 65.

![Figure 65](image)

For help send e-mail to tech@KICmail.com or call KIC 24 hour tech support at 858-673-6050.
Profile graph display

Once the software opens the Profile Graph Display, all the tabs at the top will be accessible. The General Tab will show the profile results for both the Preheat and Wave sections of the profile. You can select either the Preheat tab or the Wave tab above the Statistic table. See Figure 66.

Preheat tab

The Preheat tab represents only the section of the profile before the wave. The software draws a blue rectangle around the area that is considered preheat. The profile statistics and setpoints which are shown below the profile graph depict only the preheat section of the profile, the profile data inside the blue rectangle. See Figure 66.

Information regarding the Wave TCs are displayed in a window at the upper-right hand corner of the profile graph. This information includes Dwell Time, Parallelism, and the solder temperatures for the wave(s).

Profile Information from the Wave TCs displayed in a window at the upper-right hand corner of the profile graph. See Figures 66 and 67. This information includes; Dwell Time and Parallelism in seconds, and the Solder temperature setpoint and actual for the wave(s) portion of the profile.

The Dwell Time is measured by the Wave TCs. The Parallelism is the measured time difference between when the Wave TC-Left, and Wave TC-Right hit the wave.

The Solder Temperature setpoint is input by you before the profile when entering oven setpoint information. The solder temperature value is measured by the Air TC during the profile.

Navigator – The Navigator software option will optimize only for the preheat section of the profile. The Navigator will not predict changes to the wave section of the profile.
Statistics - Below the profile graph is the Profile Statistics. The statistics are a numeric representation of the profile and how well the profile fits the selected Process Window. The statistics for this profile and the predicted profile are shown. A percentage value is displayed in each cell beside the Statistic value. This percentage represents the amount of Process Window being used. A PWI under 100% indicates the profile fits within the selected Process Window, a PWI 100% or higher indicates the profile has exceeded the selected Process Window. The software only displays PWI values for the Preheat Statistics.

Original/Predicted Setpoints - Below the profile Statistics is the oven temperature and conveyor settings. The original setpoints represent the oven settings when this profile was run; the predicted settings represent the recommendation of the Navigator prediction software. If you did not purchase the Navigator option, the software will display the same oven settings for the original and predicted statistics. Navigator is an optional software capability that automatically finds the best profile for your product based on your solder paste specifications.

Note: The software will not show the predicted setpoints should you want to print the profile. If you wish to print the predicted setpoints, you can do so by pressing the F9 key. The F9 function key will print any active profile screen of the software.

Wave tab
The Wave tab will show profile information specific to the wave portion of the profile. The software draws a blue rectangle around the area that is considered Wave. The profile statistics and setpoints which are shown below the profile graph depict only the Wave section of the profile. See Figure 68.

Wave PWI – If the Displayed Detailed PWI option is enabled, and you entered wave-specific Process Window specs when setting up your Process Window, the Wave PWI will also be displayed when viewing the Wave tab. See Figure 68.

![Figure 68: Profile Graph Display – Wave Tab](image-url)
Pointer Slopes tab

![Figure 69: Pointer Slopes Tab](Image)

This tab will display the calculations for any *Pointers* that were placed on the graph. It can display the temperature at each pointer location, as well as the Slope, Time, and Peak temperature between any two Pointers. Right click on the graph and click *Pointer/Slopes* then left click to add a pointer on the plot. Open the *Graph Controller* menu to select which data to show in this table.

Manual profile prediction

The software has automatic (Navigator), and manual prediction capabilities. The standard software installation includes manual prediction capabilities.

Manual prediction gives you the flexibility to easily predict changes to the oven settings (temperature settings, conveyor speed), and view the results without having to spend the time actually running the profile. This feature is very helpful to minimizing the time spent fine-tuning or developing a thermal profile.

![Figure 70: Original/Predicted setpoints – Navigator (Optional)](Image)

This is an example of how the software (standard and with Navigator) lists the PWI, and oven settings for the profile. This table is divided into the Original section (top), and the Predicted section (bottom). The original values represent the oven settings at the time the profile was run. The predicted values represent the prediction results as determined by the Navigator software. See Figure 70.

If you purchased the Navigator software option, the software will automatically generate results that are best suited for the selected Process Window. In the event you wish to modify the prediction results of the Navigator, you can do so.

To predict changes to the oven settings, or modify the Navigator prediction results, click on the zone you wish to change and then click enter. In the example below, zone 1 has been selected. See Figure 71.

![Figure 71](Image)

The Navigator will predict the results of that change, and then automatically update the PWI, predicted Statistics, and the profile graph. The new predicted results will be displayed on the graph in a dotted-line format. This format enables you to easily determine the difference between the original and predicted profiles.
Analyzing the profile graph

The PWI for the profile is displayed in the bottom-left corner of this screen. If the measured PWI is below 100%, the value will be displayed in a Green font. If the measured PWI is more than 100%, the value will be displayed in a red font. See Figure 73.

Note: This display method enables you to easily identify whether the profile is in or out-of-spec.
Graph Controller

The Graph Controller allows you to modify the view of the profile graph. To open the Graph Controller, click on the TC column header or click, anywhere just outside the profile graph.

Auto scale – The Auto Scale feature will automatically adjust the X and Y axis scales to fit all of the data in the profile graph. When the Auto Scale feature is disabled, you must manually input the minimum and maximum scale settings scale of the profile graph.

TCs – The TCs section lists the thermocouples used for the profile. In the event that you wish to view the profile without one or more thermocouples, you can deselect individual thermocouples, or deselect the All check box, and choose only the thermocouples you wish to view. In the event a single, or multiple thermocouples become disconnected from the product during the profile, you can deselect the affected thermocouple(s). The software will recalculate the PWI and update the profile statistics based on the remaining thermocouples selected. You must select at least one product thermocouple.

Distance from Air TC – Displays the Distance from the Air TC for each thermocouple. You can edit these values. These values were originally entered before the Profile start.

Wave TC 1/TC 2 – Distance from Air TC to each Wave TC.

Distance Between Last Preheat and Wave – This is the distance from the main wave to the last preheat zone. You can edit this if necessary. This value was originally entered by you in the Enter Oven Setpoints and Conveyor Speed screen.

Grid – Enables/disables the view of the X and Y Axis scales.

Reference lines – Clicking this check box enables the view of Reference Lines displayed on the profile graph. These lines represent any temperatures referenced in the selected Process Window. When you use separate thermocouple specs, the Reference Lines check box is disabled, and no lines appear on the graph.

Zone lines – Enables the view for the oven zone lines on the profile graph.

Predicted TCs only - Removes the Original profile plot form view, displaying only the prediction profile plot.

Zero decimal – When viewing the Pointer tool, this setting enables or disables the decimal display. When unchecked, the software will display one decimal point.

Internal temp – Enables the view of the profiler’s internal temperature profile plot on the graph.

Display Wave TCs – Enables the display of the Wave TCs and the Divider Timestamp Line on the profile graph.

Display Detailed PWI – This default-selected checkbox enables Process Window Index (PWI) percentage values to appear on profile graph displays. (See Appendix C: Using the Process Window Index to quantify thermal profile performance)

Display of Pointers – If you choose to add pointers to the graph, this area allows you to select which calculations will be displayed in the Pointer Slopes tab of the statistics table.
Graph option menu

To view the graph option menu, right-click anywhere within the profile graph area. See Figure 75.

Examine line

The Examine line feature displays the temperature for the location of the pointer on the profile graph. See Figure 76.

Wherever the pointer is moved across the profile, the following data will be displayed:
- The first column is the actual temperature for each TC.
- The second column is the temperature of the predicted profile data
- The Delta T for both actual and predicted TC data.
- The time during the profile at which the pointer is placed

Automatic calculation of Delta T + Delta (or range) for all stats

The software will automatically calculate, and display in the statistical chart, the Delta for both the original and predicted profile data for all TCs for all Statistics. This is the range of the highest to the lowest value for any given specification. This information is strictly being displayed and is not factored in to the PWI value and is not used in the Navigator or Auto-focus calculations.

Zoom

You can also view the profile by zooming in to get a better view of a particular area of the profile display. Right-click on the graph, this will bring up a menu. See Figure 77. Select the Zoom and a chart will appear on the left side of the graph.

Using your mouse pointer, click and drag the view window in the graph over the area you wish to enlarge.
To disable the Zoom view, right-click on the graph and deselect Zoom.

Move TC line

The Move TC line feature allows the user to manually move the thermocouple plot on the profile graph. This is used to fine-tune the profile or make corrections in the event the software did not properly display the plot. See Figure 79.

Select the thermocouple you wish to move and then click and drag the highlighted plot and move it to the desired location on the profile graph. See Figure 80.

Move zone line

The Move Zone line feature allows the user to manually move the zone separation lines on the profile graph. This is used to fine-tune the profile or make corrections in the event the software did not properly display the zones.

Select to move the first line (Zone beginning) or the Last line (Zone ending) (See Figure 81) and then click and drag it to the desired location on the profile graph.
Move preheat and wave dividers

The Move Preheat and wave divider feature allows the user to manually move the Preheat and Wave locations on the profile graph. This is used to fine tune the profile or make corrections in the event the software did not properly display these points. Place the cursor over the blue wave divider line and then click and drag it to the desired location on the profile graph. See Figure 84.

Zone Resize

Select to move the first line (Zone beginning) or the last line (Zone ending and then click and drag it to the desired location on the profile graph. See Figure 85.

Reset

The Reset feature will reset the profile and undo any changes you have made to the graph using the Graph Option Menu. Select the TC Line, or Zone Line option. See Figure 86.

Move Last Zone Line

For special profiling conditions, such as on vacuum reflow ovens, this tool lets you extend out the last zone size, better visually representing the size of the vacuum zone.

Pointer/Slopes

This tool lets you place up to six (6) pointers on the graph, which can be used for calculating/highlighting data in specific areas of the profile. Use the Remove All Pointer/Slopes tool to clear all pointers from the graph.
Tips for profiling wave solder

Listed below are tips for profiling wave solder machines using your profiler. Your process may not match the picture below.

- If you are not using a Wave Surfer device, use a blank, spare board, or pallet to carry the profiler on. It may be helpful to secure the profiler and thermal shield to the board/pallet.
- Use a board stiffener when available. This will help prevent the board from sagging due to the weight of the profiler.
 - This will also help prevent liquid solder from flowing onto the board, possibly contacting the thermal shield or profiler.
 - It is helpful to raise the profiler thermal shield at least 1/8” to 1/4” off the carrier board/palette in order to prevent any liquid solder from entering the thermal shield. See Figure 87.
- You can run the profile with or without the spray fluxer active. If you choose to run wave solder profiles with the spray fluxer on, you run the risk of contaminating the Wave Surfer or thermal shield. If operating properly all the spray flux should be removed by the process.

Figure 87: Profiling Wave Solder Using a Profiler
Additional Wave Application Settings

There are additional capabilities for the wave solder process that can be enable if the specific operation is desired. These extra functions are turned on/off via a configuration program. To enable/disable any of these, first exit the PS2G software, browse to the C:\Profiling Software 2G directory, and run the PSConfig.exe.

Use Alternate Dwell Time Calculation –
When using the Wave Solder-Wave On application for profiling, enabling this selection changes the method used to determine the contact time (dwell) of the wave TC’s attached to the bottom side of the profile board. **NOTE:** Changing this setting is NOT typically recommended and is only for specialized use.

Use Alternate Parallelism Calculation –
When using the Wave Solder-Wave On application for profiling, the software calculates both Dwell Time and Parallelism. By default, the parallelism value displayed is the Left Dwell Time minus the Right Dwell Time. When this alternate method is selected, the parallelism value displayed is the difference in time between when the left and right-side wave TCs first contact the wave.

Use Conveyor Speed Measurement from bottom side TCs –
If you attach TCs to the bottom side of your profile board, you can use this function to perform a conveyor speed measurement during profiling. The software will use the following parameters to perform the calculation:
- Selection of channels on the profiler with bottom-side TCs connected
- Specified distance between the bottom side TC locations (must be 3 inches minimum)
- Difference in contact time with the solder wave of the two selected TCs

When the Conveyor speed measurement is enabled, additional selection boxes will appear in the profiling process.

Run A Profile

On the first screen, a checkbox will display for ‘Enable Conveyor Speed Measurement’. Select this box to have the speed calculation performed. The selection will be saved per product.
Select TC Screen

At the Select TC screen, you will find a new drop-down menu in the lower left for selecting the TCs to be used for the speed calculation. The following apply:
- Only two (2) TCs can be selected
- They must be bottom-side TCs
- There must be at least three (3) inches distance (length wise) between selected TCs

After making your selections, they will be shown next to the drop-down menu.

Profile Graph Display

When the profile is completed and downloaded, the data for Dwell time, Parallelism, Solder Pot temperature, and Conveyor Speed will be displayed in a window on the graph:
Profiling thermal curing processes

The software can be used to profile thermal processes that cure epoxy and other thermosetting polymers. The procedure is similar to that used with reflow soldering, but may involve creating specifications aimed at your specific cure application

To run a cure process profile:

1. From the main screen, click the Run a Profile button. The Name Product and Select Process Window screen appears.

2. Select your Process Window from the pull down list.

3. From the Application pull down, select Cure.

 Note: To have valid profile data in a cure application, it is imperative that you correctly specify the application type.

4. Select from the pull down or enter an oven name in the Oven Name field.

5. Add any appropriate production notes in the Profile Description field that you want stored with the profile. (These can be edited later.)

6. Click the Next arrow to proceed. The software guides you through the command input screens needed to run a profile.
Profiling Temperature vs. Time processes

The Temperature vs. Time application lets you profile a variety of thermal processes beyond the more typical soldering uses. These include rework, batch curing, environmental temperature cycling, and extreme temperature (-150 to 1050 C) applications. It can be used with any thermal process or experiment that can benefit from plotted temperature/time data.

Temperature vs. Time (T Vs. T) profiling differs from other applications in the following ways:

- Profilers don’t use temperature triggers to start and stop the profile. These actions are performed manually.
- TC #1 is not used as an Air-TC and operates as a normal TC. TC #1 can be included in Process Window calculations. Data for TC #1 is displayed on the profile graph. Using any other application type, it is not.
- The software prediction capabilities by design are not compatible with T Vs. T profiles. Neither Navigator or Auto-Focus work on T Vs. T profiles. PWI is calculated for each profile.
- The datalogger profiler (or wireless unit used as a datalogger) needs to be connected to the communication cable when you initiate the T Vs. T profile and when you stop it.
- Some profilers can utilize the RF option for wireless T Vs. T profiles.
- Using T Vs. T, users can measure negative temperatures. Because temperature triggers are not used, the software can display data as low as -150C.

Considerations when using the software

This section outlines the special considerations you need to take into account when using the software to set up and run a T vs T profile using your profiler and the software. This section is written assuming you have a basic understanding of the software before attempting to run a T Vs. T profile.

Global Preferences

Units of measure – Set the unit of measure for each item. These settings will determine the units used to display the profile graph.

Product start temperature – The default setting is 31C. This setting is used for T Vs. T profiling even though temperature triggers are not used. Instead the profile can start as soon as the Start Profile button is selected and as long as the product TCs are below this temperature setting.

Profiling hardware – Even if your profiler has RF capability but you run it as a datalogger, it still needs to be connected to the communication cable when you initiate the T Vs. T profile and when you stop it.

Auto Focus tab – The Auto Focus feature by design is not compatible with T Vs. T profiles.

Note: If you have made any changes, be sure and select the green check mark button to save those changes when exiting the Global Preferences screen.
Process Window Setup

The Process Window is a set of limits applied to the profile data. You have the option of either not using a defined Process Window in which case no PWI will be calculated, or define a Process Window and have the software calculate and display a PWI for that profile.

Process Window Name – Name of the Process Window file that includes the statistics chosen and limits for those statistics, along with whatever text is typed in the Description field.

- **Solder paste menu** - A read only library list of numerous solder pastes along with the statistics and limits suggested by the paste mfg., also included is a User-Defined option in the list which allows you to create a spec. of your own. See below for additional details.

- **Edit specs** – Screen allowing you to edit or choose statistics and limits for a chosen solder paste or define your own specs.

- **Wave** – This radio button switches between the process specs and the Wave process specs for the selected Process Window. Set up a Process Window specific to Wave TCs for Wave Solder profiling.

- **Read only text box** – Shows the paste name, statistics name, and limits for a Process Window chosen, edited, or saved by you. To edit select the Edit Specs button.

- **Same specs for all TCs** – By deselecting this checkbox, you can assign separate specifications for each individual thermocouple you are using. After deselecting the checkbox, you’ll need to click on the Edit Specs button to choose which statistics will be used and what spec limits will be set for each thermocouple used. This option would be used if you had component specific specifications that differ from the general solder paste specs. Another use for this would be if you wanted to monitor the actual board temperature as well as component temps. You would then only select the statistics for that TC that are relevant. If you wish to use the same specifications for all thermocouples, put a check mark in the box.

- **Select TC to view** – This dialog box will appear only if the Same Spec for all TCs checkbox is deselected. By clicking on the dropdown menu, you can view the specifications that have been defined for that number thermocouple. If a description was included, it will be displayed next to Label.

- **Process Window Description** – Field allowing for freehand notes for a particular Process Window.
To run a temperature vs time process profile:

1. From the main screen, click the **Run a Profile** button.

 The Name Product and Select Process Window screen appears.

2. Select your **Process Window** from the pull down list.

3. From the Application pull down, select **Temperature Vs Time**.

 Note: To have valid profile data in a Time Vs Temperature application, it is imperative that you correctly specify the application type.

4. Select from the pull down or enter an oven name in the **Oven Name** field.

5. Add any appropriate production notes in the **Profile Description** field that you want stored with the profile. (These can be edited later.)

6. Click the Next arrow to proceed.

 The software guides you through the command input screens needed to run a profile.
Selecting the thermocouples and starting a profile

This screen displays the live readings for all thermocouples connected to your profiler. Select the thermocouples by clicking the check box next to each TC number. Make sure the profiler has fresh batteries and is powered on. See Figure 89.

Selecting Thermocouples - To select a thermocouple, check the box next to the thermocouple number. The live temperatures are displayed beneath each thermocouple label.

Thermocouple Labels - Optionally you can check the box to include thermocouple labels. When this box is checked you can type a text label for each selected thermocouple. 20 character maximum.

![Select the Thermocouple(s) used for this Profile:](image)

Temperature Vs Time Profile
- Expected Profile Length in Minutes: 0
- Do not check the start temperature

![Figure 89: Run a Profile Screen #2 – Time vs. Temperature](image)

Note: If the selected Process Window has Separate Specs for TCs, then you must return to the Process Window-Edit Specs screen in order select/deselect TCs or change their labels.

Expected profile length – This value controls the X-Axis on the profile graph. Make sure to enter enough time to complete your profile. Otherwise the profile plot will stop as soon as the Expected profile Length is achieved. Data outside this time limit will not be displayed.

Note: to decrease the number of samples, enter a longer Expected Profile Length

Once you have selected your thermocouples, you are ready to profile.

Make sure your profiler hardware is properly connected to the computer. You will be able to view the live readings for each selected thermocouple. If you do not see the live readings, then your profiler hardware is not connected properly.

Recheck the connections. Temperature vs. Time profiles cannot begin until your profiler is connected via the cable, and communication established.

Select the Start Profile (green traffic light) button to begin profiling. The profile will begin at this point.
The software requires that the selected thermocouples read valid temperatures below the Maximum product temperature at start of profile as set in the Global Preferences screen. The default setting is 31ºC/88ºF.

Note: If any of the selected thermocouples read too high, this message will appear. See Figure 90.

![Profile cannot be started until all TCs have dropped below 88.0 F. Please wait for the product to cool off. If necessary, cancel the Profile and press the "Global Preferences" button to change the Maximum Initial Product Temperature. OK](Figure 90)

When the software detects valid temperatures for all of the selected thermocouples, it will allow you to start the profile.

IMPORTANT NOTE: All profilers have a maximum operating temperature that, to avoid damage, **should never be exceeded.** See the product datasheet for temperature tolerance information.
Viewing the live profile graph display

The Live Profile Graph display will show the profile plot on the graph for the current profile that is running. See Figure 91.

While the profiler is in the oven, and until the run has ended, the software will continue to display the Live Profile Graph. The Description tab at the top of the screen is inaccessible.

- The live profile is plotted on the graph
- The current temperatures for each thermocouple and the Delta between them are displayed in a small window in the upper-left hand corner of the profile graph. The elapsed time is also displayed.

The Live Profile Graph display will remain on your screen until the Stop Profile button is selected even if the profile time has completed and the profile plot has ended. See Figure 91.

The software will display two messages when the Stop Profile button is pressed:

The first will ask you to confirm the Profile Stop. See Figure 92.

If you select No, then the profile continues.
If you select Yes, then the second message instructs you to turn your profiler off. See Figure 93.
Viewing the profile and its statistics

The Profile screen General Tab displays the product name and profile start time at the top of the screen. The profile, profile statistics and PWI are also displayed. See Figure 94.

Profile view – To maximize the profile display, double click inside the profile graph area. The profile graph will change and be displayed in a full screen format. Double click again to return to normal view.

Statistics view – To maximize the Statistics view, double click inside the Statistics table area. The Statistics will change and be displayed in a full screen format. Double click again to return to normal view.

Description tab
The Description tab contains a text area that displays a description of the profile should you wish to enter any. See Figure 95.

This text is the same text that you can enter in the Select Product screen at the beginning of the Run Profile Routine.

This text is also displayed in the Profile Explorer view for each profile.

Figure 94: Profile Graph Display – Time vs. Temperature

Figure 95: Description Tab – Time vs. Temperature
Graph Controller

The Graph Controller allows you to modify the view of the profile graph. To open the Graph Controller, click on the TC column header or click, anywhere just outside the profile graph. See Figure 96.

Auto Scale

The Auto Scale feature will automatically adjust the X and Y axis scales to fit all of the data in the profile graph. When the Auto Scale feature is disabled, you must manually input the minimum and maximum scale settings for the X and Y axis scale of the profile graph.

Selecting thermocouples to view

The TCs section is a list of the thermocouples used for the profile. By selecting All you are selecting that all the thermocouples used for the original profile will be displayed on the profile graph. In the event that you wish to view the profile without one or more thermocouples, you can deselect individual thermocouples, or deselect the All check box, and choose only the thermocouples you wish to view.

Excluding disconnected thermocouples

If a thermocouple becomes disconnected during the profile, the profile results (PWI) may be affected due to an erratic reading. In the event a single or multiple thermocouples become disconnected from the product during the profile, you can deselect the affected thermocouple(s). The software will recalculate the PWI and update the profile statistics based on the remaining thermocouples selected. You must select at least one product thermocouple.

Grid – Enables/disables the view of the X and Y-Axis scales.

Reference lines – Clicking this check box enables the view of Reference Lines displayed on the profile graph. These lines represent any temperatures referenced in the selected Process Window. When you use separate thermocouple specs, the Reference Lines check box is disabled, and no lines appear on the graph.

Zero decimal – When viewing the Pointer tool, this setting enables or disables the decimal display. When unchecked, the software will display one decimal point.

Internal temp – Enables the view of the profiler’s internal temperature profile plot on the graph.

Display Detailed PWI – This default-selected checkbox enables Process Window Index (PWI) percentage values to appear on profile graph displays. (See Appendix C: Using the Process Window Index to quantify thermal profile performance)
Graph Option menu

To view the Graph Option menu, right-click anywhere within the profile graph area. See Figure 97.

Examine line

The Examine line feature displays the temperature for the location of the pointer on the profile graph. See Figure 98.

Wherever the pointer is moved across the profile, the following data will be displayed:

- The first column is the actual temperature for each TC.
- The second column is the temperature of the predicted profile data – based on setpoint or belt speed changes.
- The Delta T for both actual and predicted TC data.
- The time during the profile at which the pointer is placed

Automatic calculation of Delta T + Delta (or range) for all stats

The software will automatically calculate, and display in the statistical chart, the Delta for both the original and predicted profile data for all TCs for all Statistics. See Figure 98. This is the range of the highest to the lowest value for any given specification. This information is strictly being displayed and is not factored in to the PWI value and is not used in the Navigator or Auto-focus calculations.

Move TC line

The Move TC line feature allows the user to manually move the thermocouple plot on the profile graph. This is used to fine-tune the profile or make corrections in the event the software did not properly display the plot. See Figure 99.

Select the thermocouple you wish to move and then click and drag the highlighted plot and move it to the desired location on the profile graph. See Figure 100.
Reset

The Reset feature will reset the profile and undo any changes you have made to the graph using the Graph Option Menu. Select the TC Line, or Zone Line option. See Figure 101.

Profile screen buttons

There are four buttons at the bottom of the profile screen.

View/Edit Window – Click this button to either view or edit the process specification(s) for the product used in this profile.

Copy to clipboard – Click this button to copy the profile data to the windows clipboard. You can then paste the data to a different application.

Print – Click this button to print a copy of the profile that is currently on your screen.

Profile Explorer screen – When finished viewing or analyzing the profile click this button to either run another profile with this product or return to the Profile Explorer screen if the profile was opened from there.
Exiting the profile screen

Saving changes to the profile

Any changes to the Description Notes or the Process Window can be saved with the profile. This will permanently update this profile with the changes. Changes to the Process Window saved here only, save the changes with the profile. To save the changes to Process Window file see next dialog box. See Figure 102.

![Figure 102]

Saving changes to the Process Window

If you have made changes to the Process Window while viewing a profile you can save these changes when you exit the Profile screen. The Process Window will permanently have these changes whenever it is used to profile from this point forward. See Figure 103.

![Figure 103]

The software will take you to the Edit Process Window screen in order to save the changes that you have made.

Note: These 2 messages will only appear if changes have been made while viewing the profile.
Using the SRA Smart Reflow Analyzer

The SRA Smart Reflow Analyzer is a fixture specifically designed for collecting machine related data which allows you to analyze and track machine stability from run to run, and over time, and for various oven verification purposes.

The SRA uses six embedded thermocouples – three Air TCs and three Mass TCs – which collect a variety of data for each oven zone such as measured zone temperatures and side to side uniformity. With the use of the SRA, you will also be able to identify changes in heat transfer in a zone over time, through the display of HTI (Heat Transfer Index). It also utilizes the latest in laser sensor technology to automatically calculate conveyor speed each time you run it through your machine.

It has a built-in data collection module, so there is no need for a separate profiler.

The device is used to routinely check the performance of your machine. Using a variety of available specifications, the machine’s performance is measured each time a pass is made based on your selected Process Window. The included SPC charting feature allows you to track the performance of individual zones, based on specifications selected.

For additional details on the SRA Smart Reflow Fixture hardware, consult the following publication:

- SRA Smart Reflow Analyzer Hardware Guide, (Publication Number SRA-330200-000)
SRA profiling

This section will outline the steps necessary to setup and run a profile using your SRA fixture. It is written assuming you have a basic understanding of the software and its functions before attempting to run profiles.

Global Preferences

Product start temperature – This temperature setting can be changed. It is up to you to determine what temperature setting will work best for your process. **NOTE:** When the SRA is detected by the software, this setting will only apply specifically to the SRA device. When a profiler is detected by the software, such as an SPS, X5, or K2, the value set will only apply to profiler usage. This allows you to use different triggers for fixture use and standard product profiling.

Maximum product temperature at start of profile – This setting will determine the maximum temperature before the software will allow you to start a profile. If any of the thermocouples in the device measure above this setting, the software will not allow you to proceed. You will be prompted with a message stating that one of the selected TCs is not reading valid temperatures. You will have to wait until the thermocouple cools below this temperature setting before the software will allow you to proceed. This software feature helps you to collect consistent profile data by always beginning the profile with the same or nearly the same device temperatures.

The software also uses this setting to determine the profile start-temperature trigger value. The profile start-temperature trigger is always set 2ºC above the “Maximum product temperature at start of profile”. If the maximum product temperature at start of profile is set to 35ºC (default for the SRA), the profile start-temperature trigger is automatically set to 37ºC. When the Air TCs read above 37ºC, the data collection will begin.
Running an SRA profile

- Select or enter a name from the *Product Name* list. When using the SRA it is recommended that you use the oven recipe name for this field. That will allow you to easily identify runs by machine setup.

- Select *Smart Reflow Analyzer* from the Application drop-down list. The software profile results are based on this setting. It is imperative that you select the correct Application type, as this configures the software for the proper type of data collection. Failing to do so can affect the profile results.

 Note: When the *Smart Reflow Analyzer* application type is selected, the Process Window selection will disappear. The selection for the Process Window will be made on a different screen.

- Optional: Select the Sample Rate from the drop-down list to adjust, or just leave the default settings.

- Select your oven name from the list. If you’re profiling a new oven or machine, type the name in the *Oven Name* field.

 Note: If you are running the software on an oven controller computer that is communication compatible with the software, the number of zones is already known and the oven name will be entered in the *Global Preferences* screen, not on this screen. Additionally, the Zone length, and Minimum/Maximum temperature settings described on the following page will also be accessed from the *Global Preferences* screen.

- Optionally you can type notes or descriptions for this profile in the Profile Description field. These notes will be stored with the data and can be edited later if necessary,

- When you are finished with your selection, choose the Forward Arrow button to proceed.
Zone length, Minimum and Maximum temperature settings

When using the SRA, the software requires you to enter the length of each zone as well as the minimum and maximum zone temperature settings. With the SRA, you will be seeing data calculations per zone. If you wish to include data from the cooling section of your machine, you must specify the number of Cooling Zones and measurements for each.

Once you have finished entering this information select the Forward Arrow button to continue.

Entering temperature setpoints and conveyor speed

If your process requires different top and bottom setpoints, deselect the check box labeled Top and Bottom setpoints are the same. This will allow you to enter different values for top and bottom heaters in each zone. If your oven has top and bottom heaters, but not in all of the heated zones, just enter the same value as the actual setpoint in that zone for both the top and bottom setting.

Use the scroll bar below the setpoints to enter settings for additional zones not shown – including cooling zones.

NOTE: If your software is installed and communicating with an oven controller software, the heated setpoints and speed will automatically be filled in. You will need to manually enter the setpoint for any defined Cooling zones.

This screen is also where you will enter the Conveyor Speed setpoint.

When you have finished entering this information select the Forward Arrow button to continue.
Selecting a Process Window

The next screen is where you will select a Process Window to apply to the data. For the first few runs with the SRA, you will not necessarily know what the upper and lower limits for the different specifications should be for a given machine. In this case, you can select ‘None’ and the data collected will simply be displayed with no reference to an in-spc or out-of-spec condition.

You can also choose to create a new Process Window – by clicking the Create a new Process Window button – or select an existing one from the list if one had already been defined.

NOTE: Only Process Windows associated to the oven chosen will be displayed in the drop-down menu.

Creating a New Process Window

If you chose to create a new Process Window, you will be brought to the Define/Edit Process Window screen. Ensure the Fixture checkbox is selected. Enter a new name in the Process Window Name field. You will then select which ovens this Process Window will be linked to. Click the Oven Name drop-down menu to display the oven files you’ve created and put a checkmark next to each one that you want associated with this Process Window.

NOTE: You can only select multiple ovens if each have the same number of heated and cooling zones.

Click the Edit Specs button to define the upper and lower limits for your specs. Clicking the drop-down menu will display all the available specs. At the top of the list are the SRA specific specs. To assign spec limits, put a checkmark next to a desired spec and then enter the desired value/range.

You will notice for several of the specs, there are tabs for each of the defined zones (based on the oven you linked). You can apply the same limits to ALL zones by clicking the button. Or you can click a zone tab to set different limits for different areas of the machine.

Below the SRA specific specs, you will find a list of common reflow specifications. If you select any of these, the specifications chosen will only be calculated for the Mass TCs.

NOTE: The software does not contain pre-defined specification limits for the fixture specific calculations. This will be determined by you after several runs and identifying what is the normal or acceptable amount of range and variation in your machine.
After defining your desired specifications/limits, click the green check mark to return to the main Process Window screen. Click the green checkmark on the main Process Window screen to save your changes. You will be returned to the *Select a Process Window* screen of the *Run a Profile* sequence. Arrow forward to continue.

Starting an SRA profile

This screen displays the live readings from the SRA for all channels selected. All six channels are enabled by default. A minimum of two (2) Air TCs and two (2) Mass TCs must be enabled to collect data. If a channel is not reading correctly, it can be turned off by unchecking the box above the channel.

Conveyor Speed sensor – A display box will show whether the two speed sensors are operating properly. Green means it is ready; Red means there is a problem with one or both sensors. If Red, try cleaning the lenses on the SRA module and thermal shield.

Select the Start Profile (green traffic light) button to begin profiling.
Viewing the live profile graph

The live profile graph display only appears when you’re using the device in Wi-Fi mode - not as a datalogger. The live profile graph display will show the profile plot on the graph for the current profile that is running.

While the device is in the oven, and until the profile has ended, the software will continue to display the live profile graph. The other tabs at the top of the screen; Description, and Comparison are inaccessible.

- The live profile is plotted on the graph.
- The current temperatures for each thermocouple and the Delta between them are displayed in a small window in the upper-left hand corner of the profile graph. The elapsed time is also displayed.
- The current oven temperature setpoints and conveyor speed for this profile are displayed beneath the statistics table.
- The profile status is continuously updated throughout the profile. Wireless models only.

The Live profile graph display will remain on your screen until the SRA has achieved the trigger temperature that determines the profile end.
Profile retransmission

Retransmission is only available in SRA models with Wi-Fi transmit capability.

While the device transmits the live profile data to the Smart Dock, it simultaneously stores the profile data in its memory.

Once the device detects that all the thermocouples have cooled below the profile-end trigger temperature, it will begin retransmitting the profile data to the software via Wi-Fi. The device will send the profile in data packets. The retransmission status is displayed at the bottom of the screen.

When all the data packets have been received, the software will display a message asking if you want to put the device to sleep. Selecting Yes will turn off the SRA; if you select No, the SRA will remain on.

Next, the software automatically analyzes the data and presents the completed data plot and all statistical measurements.
SRA Profile graph display

General tab

The top of the screen shows the data plot for all selected channels and representations of the defined zones:

A floating window displays information about the Conveyor Speed including:

- **Setpoint** – value entered from oven recipe
- **Measured** – as measured by SRA sensors
- **Delta** – Difference between setpoint and measured

Avg Temps By Zone tab

This tab will show the average measured temperature for all 6 embedded TCs (Air and Mass). The data is displayed for each zone and includes the Uniformity or Delta T (Temperature) across the embedded TCs per zone.

Any value within the defined specification will display in **Green**; any value outside the defined specification will display in **Red**. If no specifications were defined in the Process Window, all statistical calculations will be displayed in **Black** color.

Reflow Specifications tab

If when creating a Process Window, you selected any of variables from the Reflow Specifications section, those calculations will be displayed here. For any specification chosen, it will display the measured value, along with the corresponding PWI for that measured value. As noted in the Edit Specs screen area, a PWI will only be calculated for the Mass TCs.
Oven Recipe; Measured vs Setpoint; HTI

At the bottom of the screen is additional information including:

Original Top/Original Bottom – This area displays the oven recipe settings used in this run (Zone Setpoints and Conveyor Speed).

Average Measured Air Temperature – This is the average value of all three of the Air TC readings for each zone

Delta T – This is the temperature difference between the zone setpoint, and the Average Measured Air Temperature for each zone.

Heat Transfer Index (HTI) – This is a calculation which allows you to quantify the performance and/or consistency of a zone. In the heated zones, a value of ‘0.00’ indicates no thermal energy is being transferred into a part; a value of ‘1.00’ indicates the maximum amount of thermal energy is being transferred. In a cooling zone, the range is reversed – from ‘0.00’ to ‘-1.00’.

Compare tab

This screen allows a comparison of the currently displayed run to another previous run. Only runs using the same oven configuration (same size and number of heated and cooling zones) and oven recipe can be compared. The top left Profile 1 area shows the date/time of the current run being viewed. Select the Compare Profile 2 drop-down to display a menu of the available runs that can be compared. Select one from the list, then click on the Analyze button to the right to display the comparison of the two runs.
Select/Deselect TC Data to compare

By default, all TCs are selected. Deselect any TC you want to remove from the comparison and the display will automatically update with only the selected TC(s).

Comparison graphs

The top graph will display an overlay of the complete profile runs for the selected TC(s). A legend is shown on the right side of the graph for whichever TC(s) data is selected. The bottom graph displays a plot of the variation – or Delta T – between the two runs for the selected TC(s). If upper/lower specifications were defined as part of the Process Window setup, those limits will be displayed on the graph. A legend is shown on the right side of the graph for whichever data is selected. Double click on a graph to expand it to a larger size. Right click on either graph screen to open a menu of available tools such as an Examine line and Zoom functions.

Run to Run Delta T

- **Average Delta** – displays an average of the variation in temperature across the entire data collection between the two selected runs
- **Max Delta** – displays the single largest amount of variation (in degrees Celsius) between the two runs. A negative value would indicate that the current run is “x” degrees cooler than the compared run at that location.
- **Time of Max Delta** – displays the point in the data collection where the Maximum Delta occurred. In the example above, it occurred at 260 seconds, which in this case was in the first cooling section.

Conveyor Speed

- **Delta** – displays the largest variation in measured conveyor speed between the two selected runs. A negative value would indicate the current run is “x” amount slower than the compared run.

HTI

- **Delta** – displays the variation in Heat Transfer Index for each zone between the two selected runs. A negative value would indicate the HTI in the current run is lower than compared run.

SPC Charting with SRA

The data collected from the SRA can be analyzed over time by using the SPC charting capabilities. See the SPC Charting section for details.
Appendix A: Using optional software

The software functionality can be enhanced by several available options, including Navigator Power, Auto-Focus Power, Statistical Process Control, Live Data Output, Centralized Process Window Control and Virtual Profiling. The sections that follow describe each of the options in detail.

The software options are distributed on and activated from a software key—a removable USB dongle key that can be separately purchased from KIC. The software key installs in any open USB port. When connected, the software key enables the use of the functions associated with each software option.

Note: Do not connect the software key to the computer before installing the Profiler Software. Install the software, and then connect the software key to a USB port.

To check that the software key is working properly, start the software and display the Hardware Status screen. The options available on the connected key appear in the Software Key field.

If the message No software key found appears, the software does not detect the software key. The problem might be with the USB port, the software key, or the software drivers. The software key drivers install as part of the software installation so reinstallation of the base software will likely repair any driver related issues.
Using Navigator Power for profile optimization

![Figure 104: Optimization Tab](image)

The **Optimization Tab** allows you to set the search functions of the **Navigator Power Option**. The **Navigator Power** will search through millions of setpoint and conveyor speed combinations to find the optimal setting for each product. This optimization is based on what options you select in this tab.

Original PWI – The Process Window Index for the original profile

Best PWI – The best Process Window Index that can be found based on the oven recipe optimization constraints selected.

Speed change – The total change to the conveyor speed for the best oven recipe found.

Total setpoint change – The sum of all setpoint changes for the best oven recipe found.

Search Mode for Optimization

- **Minimize PWI** – Search for the combination of setpoint temperatures and conveyor speed that will minimize the Process Window Index.
- **Allow zone setpoints to change** – This option will determine if Navigator will include zone setpoint changes when predicting new solutions.
- **Allow conveyor speed to change** - Choose whether to allow Navigator to vary the conveyor speed. If you choose this feature, you can set the minimum and maximum speeds.
- **Maximize conveyor speed** – Search for the setpoint temperatures that will maximize conveyor speed.
- **Minimize energy consumption** – Search for the oven settings that will minimize the power consumption of the oven by finding setpoint solutions with slower conveyor speeds and lower temperature settings.

Conveyor speed constraints

As long as the Allow Conveyor Speed to Change feature is selected, these options will be available.

- **Minimum** – Select the minimum conveyor speed you want to allow.
- **Maximum** – Select the maximum conveyor speed you want to allow.
Using Auto-Focus Power

If you have Auto-Focus Power available through the software key, its settings appear on the Auto-Focus tab that is part of the Global Preferences.

![Global Preferences – Auto Focus Tab](image)

Selecting profile optimization settings

Search Mode for Auto-Focus

- **Minimize PWI** – Search for the combination of setpoint temperatures and conveyor speed that will minimize the Process Window Index (PWI).

- **Allow zone setpoints to change** – This option will determine if Auto-Focus will include zone setpoint changes when predicting new solutions.

- **Allow conveyor speed to change** - Choose whether to allow Auto-Focus to vary the conveyor speed. If you choose Allow to Vary you can set the minimum and maximum.

- **Maximize conveyor speed** – Search for the setpoint temperatures that will maximize conveyor speed.

- **Minimize energy consumption** – Search for the oven settings that will minimize the power consumption of the oven by finding setpoint solutions with slower conveyor speeds and lower temperature settings

Conveyor speed constraints

Minimum – Select the minimum conveyor speed you want to allow.
Maximum – Select the maximum conveyor speed you want to allow.
Setting product dimensions for Auto-Focus

If you have purchased the Auto-Focus software option, this screen will appear. Enter the length, width, and weight of your product, and then choose the Forward Arrow button. See Figure 106.

- This product will be included in the Auto-Focus library from this point forward.
- Make sure to measure using the correct units of measurement.

Auto-Focus confirm screen

This screen is displayed in order to confirm the product measurements as entered by you. See Figure 107.

You have two options:

1. Use current Oven Recipe – use the most recent oven recipe setting for this product. The next screen will display the most recent setpoints and conveyor speed for this product.

2. Use Auto-Focus to find an in-spec Oven Recipe – This will initiate the Auto-Focus option for this product.
If the Use Auto-Focus… button is selected, and no matching product is found, this dialog box will appear, choose the OK button. (Figure 108.)

You will be returned to the Confirm screen. Select the Use Current Oven Recipe button and enter the oven setpoints and conveyor speed you want to start with.

If the Use Auto-Focus… button is selected, but there are not enough products in the database to confidently give an expected PWI, this dialog box will appear. (Figure 109.)

If you select Yes, the next dialog box shows the Auto-Focus–First Guess recipe in order for you to confirm.

If No, you will be returned to the Confirm screen. Select the Use Current Oven Recipe button and enter the oven setpoints and conveyor speed you want to start with.

If the Use Auto-Focus… button is selected and there are a sufficient number of boards in the database, the following dialog box will appear: (Figure 110.)

If you select Yes, the next dialog box shows the Auto-Focus–First Guess recipe in order for you to confirm.

If No, you will be returned to the Confirm screen. Select the Use Current Oven Recipe button and enter the oven setpoints and conveyor speed you want to start with.
If you select **YES**, you will be prompted to Confirm the First Guess Recipe. See Figure 111.

![Figure 111: Run a Profile – Auto Focus screen #3](image)

Confirm the recipe and select the Forward Arrow button. If there is no communication with the oven controller, the following dialog box appears: You must manually enter the recipe information on the oven. See Figure 112.

![Figure 112](image)

If there is communication with the oven, then the recipe is copied directly to the oven.
Displaying statistical process control data

The Statistical Process Control (SPC) option displays profile data to chart Process Capability Index (Cpk) values. When the software detects the SPC option on the key, the SPC column appears in the Profile Explorer screen:

To view a product’s chart(s) and/or SPC data:

1. Select a product folder.
2. In the SPC column select the profiles to be charted by clicking the check box for each profile. (The maximum number of boards that can be selected for SPC charting is 35.)

 Note: MVP Users - Select either Baseline profiles or Virtual Profiles since the software can only chart one type of profile at any given time.

3. Next, select the **Show Charts** button.
4. The charts for the selected profiles will be displayed in a full screen format.
SPC chart display

The Chart tab will display a control chart for the overall profile PWI and for each individual process specification with upper and lower alarm limits as defined in the Process Window setup. The chart data will coincide with the stored profile data for the selected board, date and time.

The control charts hold all of the historical profile data for your product as selected in the Profile Explorer SPC column. Each chart contains data for every product thermocouple used during the profile.

Selector Line - Each chart has a Selector Line. The Board or Profile # will be displayed at the top of the screen; along with the date and time that profile was run. You can move the Selector line position by clicking and dragging the small triangle at the bottom of the Selector line in any chart window.

The Maximum PWI and Cpk for the selected board, date and time will be highlighted above the corresponding chart(s). In the bottom-left corner of the screen, the PWI for the selected profile is displayed.

Chart display controller

Select the Chart Display Controller button (Upper-Right Corner) to:
1. Select the number of control charts to display
2. Enable/Disable Cpk.
3. Edit the minimum and maximum number of data points to calculate SPC (Cpk) data for the selected product.
Viewing chart data

To view individual chart data, select a chart and then click inside the chart area. This will display that particular chart in a full screen format.

Move the mouse pointer over the chart data, and a Display Info box will appear. This Display Info box data includes PWI, Cpk, date, and time for each board.

- **Meter window** – Right click anywhere in the full screen chart area. A menu will appear, select Meter Window. This will display a small data box in the upper-left corner of the profile graph. This data box will display the historical – statistic data for any selected board. To select a board move your mouse pointer along the chart data, at each data point the historical – statistic data for that board will be displayed. Right-click in the chart area again and de-select Meter Window to disable this feature.

- **Point protector** – When this feature is enabled, the charts will display individual data points for each board. To activate this feature right click anywhere in the full-screen chart area. A menu will appear, select Point Protector. This will display the individual data points on each control chart. De-selecting this feature will remove the data points from the control chart, showing only a plot of the same data. By default, the Point Protector will be enabled for charts containing 20 boards or less. Click in the full screen chart area again to return to the regular Chart tab view.
SPC charting for SRA data

In addition to the charting described above, when using an *SRA Smart Reflow Analyzer* you can track the stability over time of various machine related parameters. Additional tabs will be displayed on the main chart tab when viewing data from the SRA.

Note: Specifications must be selected, and limits defined, in a Process Window to view the SPC charting with SRA data.

- **Reflow Specifications** – This tab will display a control chart for the overall profile PWI and for each individual process specification with upper and lower alarm limits as defined in the *Process Window* setup. The chart data will coincide with the stored profile data for the selected run, date and time.

- **Conveyor Speed** – This tab will display a control chart for the measured Conveyor Speed for each run, with upper and lower limits displayed as defined in the *Process Window* setup.

- **Zone tabs** – There will be separate tabs displaying the SRA specific calculations for each zone. The number of Zone tabs displayed (heated and cooling) will be based on the oven configuration file selected when the runs were collected.

The *Reflow Specifications* SPC charts will calculate and display Cpk calculations for the selected specifications as these are ‘process related’ variables. The *Conveyor Speed* and individual Zone charts will display Cm and Cmk calculations for the selected specifications as these are ‘machine related’ variables.
Using Live Data Output (LDO)

The Live Data Output, or LDO, option allows you to automatically create an external data and/or image file for a profile. The data file can be used by third-party applications such as Line Balancing/Production Monitoring Host or external SPC software. The data includes all relevant profile data, statistics, and limits. The image output function provides users an automatically created ‘picture’ of the completed profile.

Note: For the Live Data output to function, the appropriately programmed USB dongle key must remain connected to the PC at all times during use. You can verify if you have the LDO feature by viewing the Software Key panel in the Hardware Status screen.

Configuration

The LDO option is enabled in the PSConfig.exe utility.

1. Shut down the PS2G software
2. Browse to the C:\Profiling Software 2G directory
3. Run the PSConfig.exe file
4. Select the LDO tab

Image Output – Select to generate an image file each time a profile is downloaded. Click the Browse button to select a directory where the image files should be saved. Select the type of image file.

Data Output – Select to generate an external data file each time a profile is downloaded. Click the Browse button to select a directory where the data files should be saved. Select the type of data file.

5. Click OK to save and close the utility

The format of the Image Output file is based on the Printout preferences set. To change the layout between either Portrait or Landscape mode, see the Printing profile display screens section of this manual.
Operation

Output of the LDO file – When downloading of a profile is completed, the data and/or image files are automatically created and saved to the directory specified by the user.

Viewing LDO data – The LDO output files can be generated in commonly used file formats: .csv, .txt, or .xml for data files; .png or .jpeg for image files.

Note: For the Live Data output to function, the appropriately programmed USB dongle key must remain connected to the PC at all times during use. You can verify if you have the LDO feature by viewing the Software Key panel in the Hardware Status screen.

Examples of data output file

<table>
<thead>
<tr>
<th>Zone Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Setpoints:</td>
<td>77°C</td>
<td>127°C</td>
<td>159°C</td>
<td>181°C</td>
<td>181°C</td>
<td>192°C</td>
<td>181°C</td>
<td>190°C</td>
<td>239°C</td>
<td>242°C</td>
</tr>
<tr>
<td>Bottom Setpoints:</td>
<td>77°C</td>
<td>127°C</td>
<td>159°C</td>
<td>181°C</td>
<td>181°C</td>
<td>192°C</td>
<td>181°C</td>
<td>190°C</td>
<td>239°C</td>
<td>242°C</td>
</tr>
<tr>
<td>Conveyor Speed:</td>
<td>34.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL PWI:</td>
<td>29.93%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistics Values: BLTC-1 BLTC-2 BLTC-3 BLTC-4
Max Rising Slope: 2.29 1.74 1.86 1.76
Soak Time 140-170°C: 66.21 72.91 70.02 75.43
Reflow Time /183°C: 70.25 55.67 57.41 55.52
Peak Temperature: 232.34 212.01 216.95 234.36

Statistics Limits: Low Target High
Max Rising Slope: 0 2 4
Soak Time 140-170°C: 50 70 90
Reflow Time /183°C: 40 57.5 75
Peak Temperature: 200 213 225

Raw TL Raw Temperature

<table>
<thead>
<tr>
<th>Seconds</th>
<th>TC1</th>
<th>TC2</th>
<th>TC3</th>
<th>TC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33.01</td>
<td>21.95</td>
<td>21.73</td>
<td>24.4</td>
</tr>
<tr>
<td>0.33</td>
<td>33.45</td>
<td>22.01</td>
<td>21.84</td>
<td>24.31</td>
</tr>
<tr>
<td>0.7</td>
<td>34.06</td>
<td>22.01</td>
<td>21.78</td>
<td>24.56</td>
</tr>
<tr>
<td>1.05</td>
<td>34.4</td>
<td>22.01</td>
<td>21.78</td>
<td>24.67</td>
</tr>
<tr>
<td>1.4</td>
<td>34.78</td>
<td>22.01</td>
<td>21.78</td>
<td>24.84</td>
</tr>
<tr>
<td>1.75</td>
<td>35.23</td>
<td>22.17</td>
<td>21.95</td>
<td>24.84</td>
</tr>
</tbody>
</table>
Centralized Process Window Control

This optional feature enables a customer to ensure that every instance of the software is always using the same Process Window files and prevents unauthorized editing of specifications. Some factories may have multiple PCs across the production floor where they run profiles from, and the same Process Windows may need to be used at any one of those PCs. This can lead to mistakes being made when transferring files from one machine to another. Or, someone may make a change to a specification on one machine, and the change may not be made on others or the updated file is not copied to all other software. This can lead to varying profile results depending on which PC the data is collected in.

This feature eliminates these situations by ‘centralizing’ the creation and editing of Process Window files through the use of a separate application, accessible only by authorized personnel. All Process Window files reside in a specified central directory, and each instance of the Profiling Software 2G get their Process Windows from this location. Additionally, all creation and editing functions within the PS2G software are disabled. This ensures that no matter who is running the profile or at which location, the correct, approved Process Window specifications are the only ones shown.

Note: For the Centralized Process Window Control to function, the appropriately programmed USB dongle key must remain connected to the PC at all times during use. You can verify if you have the optional feature by viewing the Software Key panel in the Hardware Status screen. Additionally, each instance of the PS2G software that you want to use this option on must be connected to your company network and have access to the directory where the Process Windows are saved.

KIC File Administrator

![KIC File Administrator](image)

The **KIC File Administrator** is the application that will be used for creating and editing Process Windows for use with the Centralized Process Window Control option.

Note: For the **KIC File Administrator** (or KFA) to function, the appropriately programmed USB dongle key must remain connected to the PC at all times during use. Only authorized users should be allowed to have access to this application.
As an added protection, this application requires a password for use. The default password is Admin, but can be changed in the Settings menu after logging in.

Login/Logout – Allows you to display or deactivate all areas of the application.

Change Specs Name – Allows a user to change the name of a specification. See Change Specs Name section below for details.

Settings – Used for setting units of measure (for this application), changing password, inactivity time-out, etc.

Working Directory – This is the network location where you will be saving/storing the Process Window files. By default, it will show the path where the KFA application is located. Use the *Browse* button to point to the desired network directory.

Convert Old PW files – This section is used for updating existing Process Window files for compatibility* with the Centralized Process Window Control option.

Drop-down menu – Displays list of currently available Process Window files. User can also type in a new name if creating a new Process Window.

OK – Saves any changes and closes application

Cancel – Ignores any changes made and closes application

Apply – Saves changes and keeps open the application

*The Centralized Process Window Control option uses a unique file format for Process Windows. When the option is in use, the PS2G will only read Process Window files that were created or converted using the KIC File Administrator application. ‘Standard’ Process Window files will not be recognized by the PS2G software when this option is enabled.
Working Directory

As this is the network location where the Process Window files will be stored, and ALL PS2G software installations will need to access this directory, you may need to contact your IT department to identify a proper location for this directory.

Once a network directory is identified, click on the Browse button to select the location. Click OK in the selection window, then click Apply to save the change. Two subfolders named Ovens and ProcessSpecs will automatically be generated in the specified directory. All new Process Windows created, and any existing ones that are converted to the compatible format, will be saved into the ProcessSpecs folder of this Working Directory location.

Convert Old PW files

This section enables you to easily convert any existing Process Window files you already have into the updated format so they can be used with the Centralized Process Window Control option. To update existing files:

Click on the Browse button and point to the ProcessSpecs sub-folder of a Profiling Software 2G directory. Click the Apply button. All Process Windows files (.PSProcessSpec) will be automatically copied, converted into the new format (.CentralProcessSpec), and then pasted into the ProcessSpecs folder of the Working Directory on the network. To ensure all of your Process Windows are updated and available, repeat these same steps for each PC where you have the PS2G software installed.

Change Spec Name

This functionality is available for users who need to customize the name of a given specification to meet their internal naming conventions for process specifications. The updated name is what will display in the PS2G Process Windows.

If you need to change a specification, check the Use Change Specs Name checkbox. From the left side columns (greyed out), locate the specification names you want to modify and type the new name into the corresponding right side column. Click Save then Exit when you’ve completed your changes.
Configuration of PS2G software

To use the Centralized Process Window Control option in the PS2G software, a selection needs to be made during the software installation. This will automatically configure the software to use this function. A message will appear on the screen asking if you wish to enable this functionality:

NOTE: Only select the checkbox if you have purchased the Centralized Process Window Control option and want to implement the capability in the software.

After installation of the PS2G software is completed, you will also need to specify the network directory where the Process Window files will be retrieved from. This will be done through the PSConfig.exe utility.

1. Shut down the PS2G software
2. Browse to the C:\Profiling Software 2G directory
3. Run the PSConfig.exe file
4. In the Process Window Directory section, click Browse and select the ProcessSpecs folder in the network drive previously specified in the KFA utility
5. Click Apply and OK to save the changes and close the utility
Operation of PS2G software

When the *Centralized Process Window* option is in use, the PS2G software will populate the drop-down menu at the top of the screen with *only* the Process Window files from the specified network directory. All edit and naming functions are removed. The user can only view the Process Window files. The Process Window files will automatically be downloaded into the local PS2G directory from the specified network location. This ensures that whenever a Process Window needs to be accessed – either from opening the Process Window screen, or from the Run a Profile screen – the most up-to-date version of the Process Windows are always being used.

Note: For the Centralized Process Window Control to function, the appropriately programmed USB dongle key must remain connected to the PC at all times during use. You can verify if you have the optional feature by viewing the Software Key panel in the Hardware Status screen. Additionally, each instance of the PS2G software that you want to use this option on must be connected to your company network and have access to the directory where the Process Windows are saved.
Using Virtual Profiling

The optional Virtual Profile feature is automatically enabled when the software detects that the MVP software key is connected to the computer. The Virtual Profiling feature requires the MVP (Manual Virtual Profile) hardware in order to collect Baseline and/or Virtual Profile data.

The combination of MVP hardware and Virtual Profile software gives the user the advantage of not having to run an actual instrumented profile board through the oven every time in order to check the current thermal profile of a process. Instead the user simply runs the MVP through the oven and a Virtual Profile is calculated based on the MVP’s temperature readings.

After setting up an in-spec profile for your PCB, you will create a baseline by running a single profile for your PCB with the MVP fixture attached. Subsequent verification profile runs only require the use of the MVP fixture without the need of the PCB. The single programming run eliminates the need to further sacrifice your PCB for periodic process checks.

Required hardware:
- MVP hardware kit, including MVP software key
- Profiler
- Profile board (instrumented with type K thermocouples).

Standard profiles, or profiles run without the MVP profiling fixture cannot be used with the Virtual Profiling feature. In order to utilize the Virtual Profiling feature you must run the profiles for your product(s) using the MVP profiling fixture. These profiles are called MVP profiles.

There are three types of MVP profiles:

Baseline profile – The Baseline profile is used by the software as a set of data to which it will compare or measure a Virtual Profile against. Using the thermal profile data from the user’s profile board as well as the MVP profiling fixture as a model the software can calculate the current Virtual Profile each time the MVP is run through the oven.

Note: The default criterion for a Baseline profile is that the PWI is less than 90%. This maximum PWI value can be changed in the Global Preferences screen.

Virtual profile – A Baseline profile must be established for any given product before a Virtual Profile can be run. Once a Baseline profile has been established the user can then run a Virtual Profile using only the MVP profiling fixture eliminating the need to run the actual profile board. The MVP is run through the oven and the Virtual Profile is calculated based on the temperature readings of the MVP.

Verification profile – A Verification profile is run whenever the user wishes to verify the actual thermal profile of the oven. A Verification profile requires the user to run a profile using their instrumented profile board along with the MVP, similar to a Baseline profile. If the PWI of the Verification profile meets the Baseline profile criteria then it becomes the new Baseline profile for that product.

Establishing a baseline profile

In order to obtain Virtual Profile data, a Baseline profile must first be established.

To run a baseline profile:

1. Install the software.
2. Connect the MVP software key to the computer.
3. Start the software.
4. In the Global Preferences screen select the MVP check box and then enter the maximum PWI value to allow Virtual Profiling.
5. Next run a profile by selecting the Run a Profile button from the main menu.
6. In the Select screen, select your Product, Process Window, Application type, Sample Rate, Oven, and then select the MVP profile check box. Notice the “Run a Baseline Profile” is grayed out and automatically selected for you. Select the forward arrow button to proceed.

7. The next screen will have you enter the oven setpoints and conveyor speed. Then select the forward arrow button to proceed.

8. The next screen will graphically depict the connection of the MVP thermocouples to the profiler. Follow the on screen directions and then select the forward arrow button to proceed.
9. The next screen instructs the user to insert the (instrumented) profile board into the MVP board clamps and then attach the thermocouples to the profiler. Follow the on screen directions and then select the forward arrow button to proceed.

10. In the next screen the user selects the thermocouples to be used. Select the check box for each thermocouple and then select the Start Profile button when ready. As long as the profiler is on and connected, the temperatures for all connected thermocouples are below 31°C, and the oven is within 2 degrees of the setpoint temperatures the profile can begin.
11. The next screen will depict the MVP, profile board, and the profiler being loading onto the conveyor and entering into the oven. Select the forward arrow button to proceed to the profile graph where the profile will be displayed.

12. When the profile run has finished the software calculates the profile’s PWI value. If the PWI value is less than 90% (default max PWI value for Virtual Profiling) then the profile qualifies as a Baseline profile. A Virtual Profile cannot be run until a Baseline profile for the product has been established.

Baseline profiles are listed in the Profile Explorer Profile Type column. They also have a “BL” designation as the icon.
Running a Virtual Profile

Unlike Standard profiles which are initiated by selecting the Run a Profile button on the main menu, Virtual Profiles can only be run from the Profile Explorer screen and only if a Baseline profile exists for the selected product.

To run a Virtual Profile:

1. Connect the MVP software key to the computer
2. Start the software
3. Select the Profiler Explorer button from the main menu.
4. Select a Product folder.
5. Select a Baseline profile
6. Select the “Create VP” button.

Next a message will appear asking “Do you want to start Virtual Profiling this product?” Select OK to continue; Cancel to cancel the Virtual Profile. If you choose OK then you will be guided through the subsequent Virtual Profiling screens.
Since the software already knows the Product name, Process Window, and Sample Rate for the product, the only available actions are to select the Oven Name and/or type a profile description in the text field and then select the forward arrow to proceed. Select the red X button to cancel the Virtual Profile.

The next screen will graphically depict the connection of the MVP thermocouples to the profiler and inserting/attaching the MVP Carrier. Follow the on screen directions and then select the forward arrow button to proceed.

In the next screen the current temperatures for the MVP thermocouples are displayed. Select the Start Profile button. As long as the profiler is on and connected, the temperatures for both of the MVP thermocouples are below 31C, and the oven is within 2 degrees of the setpoint temperatures the Virtual Profile can begin.
The next screen will depict the MVP, MVP Carrier, and profiler being loading onto the conveyor and entering into the oven. Select the forward arrow button to proceed to the profile graph.

During the live profile there will no profile data displayed on the profile graph. When the profile has finished the profile results including PWI, and the profile Statistics will be displayed on the profile graph. The Virtual Profiles for each product are listed in the Profile Explorer Profile Type column. Virtual Profiles also have a “VP” designation as the icon.
Verification profiles

A Verification profile is run whenever the user wishes to verify the actual thermal profile of the product. A Verification profile requires the user to run a profile using their instrumented profile board along with the MVP, similar to a Baseline profile. If the PWI of the Verification profile meets the Baseline profile criteria then it becomes the new Baseline profile for that product.

Follow these steps to run a Verification Profile:
1. Connect the MVP software key to the computer
2. Start the software
3. Select the Profiler Explorer button from the main menu.
4. Select a Product folder.
5. In the Profile Type column select a Virtual Profile and then select the Display Graph button. The selected Virtual Profile graph will be displayed.
6. From the profile graph screen select the Profiler Explorer button. A message will appear asking the user “Do you want to run a MVP Verification profile with this product?” Select Yes.
7. In the Select screen, select your Product, Process Window, Application type, Sample rate, Oven. In the MVP profile area, notice the “Run a Baseline Profile” is grayed out and automatically selected for you. Select the forward arrow button to proceed.
8. The next screen will graphically depict the connection of the MVP thermocouples to the profiler. Follow the on-screen directions and then select the forward arrow button to proceed.
9. The next screen instructs the user to insert the (instrumented) profile board into the MVP board clamps and then attach the thermocouples to the Profiler. Follow the on screen directions and then select the forward arrow button to proceed.

![Image of insertion and attachment instructions]

Figure 135: Verification Profile – Insert Profile Board and Attach Thermocouples

10. In the next screen the user selects the thermocouples to be used. Click the check box for each thermocouple and then select the Start Profile button when ready. As long as the profiler is on and connected, the temperatures for all connected thermocouples are below 31°C, and the oven is within 2 degrees of the setpoint temperatures the profile can begin.

![Image of thermocouple selection]

Figure 136: Verification Profile – Select Thermocouples
11. The next screen depicts the MVP, profile board, and profiler being loading onto the conveyor and entering into the oven. Select the forward arrow button to proceed to the profile graph where the profile data will be displayed.

![Verification Profile – MVP, Profile Board, and Profiler Entering Oven]

12. When the Verification profile is finished the software calculates the product’s thermal profile and resulting PWI value. If the PWI value is less than 90% (default max PWI value) then the profile becomes the new Baseline profile as shown below:

![Profile Explorer]

![New Baseline profile]
Appendix B: Writing data over a network

The software can easily be configured to write the collected data directly to a network drive location. This allows data from one or even multiple systems to be stored in one centralized location (Server/Shared Hard Drive).

You must have a mapped network drive on the PC running the software to the desired network location. Due to the varieties of OS and network configurations, KIC cannot detail this step. We recommend you contact your IT/Network administrator if you need assistance setting up a mapped network drive.

Once you have mapped the drive, select a folder on the network drive and copy in the following folders from the C:\Profiling Software 2G directory – Ovens, Process Specs, and Profiles. Once completed follow the steps below on the PC where the software is installed:

1. Ensure the software is shutdown. Open Windows Explorer, and locate the file: C:\Profiling Software 2G\Log\PSDataPath.kiccfg

2. Double-click on the PSDataPath.kiccfg to open it in Notepad. See Figure 139:

 ![Figure 139](image1)

3. Change the line AllowUserToManuallyChangeWorkingDataPathInThisIniFile=0 to the value =1. See Figure 140.

 ![Figure 140](image2)

4. Change the KIC2000DefaultDataPath= to the desired network location. See Figure 141.

 ![Figure 141](image3)

5. Once the PSDataPath.kiccfg file has been modified with the new locations, choose File/Save from the drop down menu to save the changes.

6. Close Windows Explorer and start the software.
7. With the software running, go into Profile Explorer. You should now see the new data path directory displayed in the upper right hand corner of the screen. See Figure 142.

![Profile Explorer](image)

Figure 142

All data generated (oven files and process specs) and collected (profiles) will be written directly to the specified network directory. You can now view the collected data from any PC on the network that is running the software.

If the network is unavailable when accessing various areas of the software (Define/Edit Process Window, Run A Profile, Profile Explorer), a message will appear alerting you to the issue:

![Message](image)

When this occurs, you are still able to use the software. It will temporarily reset back to the local install directory and any new files generated or updated will be saved in the local directory (C:\Profiling Software 2G). If the network connection is re-established, the Profiling Software 2G software must be restarted to begin writing directly to the network directory again.

Any data that was collected while the software was offline will be moved to the network directory after the connection has been re-established and the Profiling Software 2G software is restarted.
Appendix C: Using the Process Window Index to quantify thermal profile performance

The problem

While there are currently statistically valid methods for quantifying pick and place and screen printer performance, there is no widely accepted method for comparing performance of thermal profiles, and thus, no quantifiable system of ranking thermal process performance. Once a thermal profile has been run, it is judged as being either in or out of spec, and perhaps subjectively judged as being OK, good, or really good. Efforts to track process performance for SPC or QC generally focus on a single, or a small group, of profile statistics; for example, peak temperature of one or two thermocouples on a golden board. The Process Window Index is a statistical method for ranking thermal profile and thermal process performance.

Defining the Process Window Index

The Process Window Index (PWI) is a measure of how well a profile fits within user defined process limits. See Figure 143.

This is done by ranking process profiles on the basis of how well a given profile “fits” the critical process statistics. A profile that will process product without exceeding any of the critical process statistics is said to be inside the Process Window. The center of the Process window is defined as zero, and the extreme edge of the process window as 99%.

A PWI of 100% or more indicates that the profile will not process product in spec. A “Process Window Index” of 99% indicates that the profile will process product within spec, but it is running at the very edge of the Process Window. A “Process Window Index” of less than 99% indicates that the profile is in spec and tells users what percentage of the process window they are using: for example, a PWI of 70% indicates a profile that is using 70 percent of the process spec.

The PWI tells users exactly how much of their process window a given profile uses, and thus how robust that profile is. The lower the PWI, the better the profile. A PWI of 99% is risky because it indicates that the process could easily drift out of control. Most users seek a PWI of below 80%, and profiles with a Process Window Index between 50% and 60% are commonly achieved (if the oven is sufficiently flexible and efficient).

Figure 144 shows the Process Window Index for the Peak Temperature of a single thermocouple. The Process Window Index for a complete set of profile statistics is calculated as the worst case (highest number) in the set of statistics.
For example: if a profile is run with six thermocouples, and four profile statistics are logged for each thermocouple, then there will be a set of twenty-four statistics for that profile, and the PWI will be the worst case (highest number expressed as a percentage) in that set of profile statistics. Note that Figure 145 shows the user-designated critical statistics for a single thermocouple.

Typical Leaded Process Window

<table>
<thead>
<tr>
<th>Slope</th>
<th>PWI</th>
<th>°C/Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0%</td>
<td>0.0</td>
</tr>
<tr>
<td>80%</td>
<td>20%</td>
<td>2.0</td>
</tr>
<tr>
<td>60%</td>
<td>40%</td>
<td>4.0</td>
</tr>
<tr>
<td>40%</td>
<td>60%</td>
<td>6.0</td>
</tr>
<tr>
<td>20%</td>
<td>80%</td>
<td>8.0</td>
</tr>
<tr>
<td>0%</td>
<td>100%</td>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soak Time Between 140°C ~ 170°C</th>
<th>PWI</th>
<th>Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0%</td>
<td>90</td>
</tr>
<tr>
<td>80%</td>
<td>20%</td>
<td>78</td>
</tr>
<tr>
<td>60%</td>
<td>40%</td>
<td>74</td>
</tr>
<tr>
<td>40%</td>
<td>60%</td>
<td>70</td>
</tr>
<tr>
<td>20%</td>
<td>80%</td>
<td>66</td>
</tr>
<tr>
<td>0%</td>
<td>100%</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak Temperature</th>
<th>PWI</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0%</td>
<td>225</td>
</tr>
<tr>
<td>80%</td>
<td>20%</td>
<td>223</td>
</tr>
<tr>
<td>60%</td>
<td>40%</td>
<td>221</td>
</tr>
<tr>
<td>40%</td>
<td>60%</td>
<td>219</td>
</tr>
<tr>
<td>20%</td>
<td>80%</td>
<td>217</td>
</tr>
<tr>
<td>0%</td>
<td>100%</td>
<td>215</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Above 183°C</th>
<th>PWI</th>
<th>Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0%</td>
<td>70</td>
</tr>
<tr>
<td>80%</td>
<td>20%</td>
<td>65</td>
</tr>
<tr>
<td>60%</td>
<td>40%</td>
<td>62</td>
</tr>
<tr>
<td>40%</td>
<td>60%</td>
<td>59</td>
</tr>
<tr>
<td>20%</td>
<td>80%</td>
<td>56</td>
</tr>
<tr>
<td>0%</td>
<td>100%</td>
<td>55</td>
</tr>
</tbody>
</table>

Figure 145: The Process Window Index
(Multiple Statistics for a Single Thermocouple and Final PWI Calculation)

Calculating the PWI

To calculate the Process Window Index: $i=1$ to N (number of thermocouples); $j=1$ to M (number of statistics per thermocouple); $\text{measured_value}_{i,j}$ is the $[i,j]$th statistic’s value; $\text{average_limits}_{i,j}$ is the average of the $[i,j]$th statistic’s high and low limits; and $\text{range}_{i,j}$ is the $[i,j]$th statistic’s high limit minus the low limit.

$$\text{PWI} = 100 \times \max_{i,j=1}^{N,M} \left(\frac{\text{measured_value}_{i,j} - \text{average_limits}_{i,j}}{\text{range}_{i,j} / 2} \right)$$

Figure 146: Formula for calculating the PWI

Thus, the PWI calculation includes all thermocouple statistics for all thermocouples. The profile PWI is the worst case profile statistic (maximum, or highest percentage of the process window used), and all other values are less.

Note: When using non-centered Target values, a modified formula is used.
Benefits of ranking thermal profile performance

The analysis of thermal profiles with the Process Window Index offers four significant benefits. The first is that profiles can be easily compared, and users can be confident that they are using the best profile their process can achieve. Before the PWI was available for profile analysis, comparing profiles was subjective, and users could never be certain they had the best profile for their product. The PWI provides an excellent opportunity for process improvement and its use is a significant step towards Zero-defect Production.

The second benefit is that the PWI greatly simplifies the profiling process. When used in advanced profiling tools, all profile statistics are reduced to a single number (the PWI) that even the most inexperienced operator can understand. This means significant savings in terms of training costs and a reduction in defects caused by operator error. It further means that in a few minutes, an inexperienced operator can setup an oven with the optimal profile, a job that formerly could take an experienced engineer hours.

The third benefit is that because the PWI reflects the performance of the whole profile, it provides much better indicator of process capability than tracking a single statistic. The PWI thus provides excellent data for SPC and other QC monitoring programs while simplifying data gathering and reducing process monitoring costs.

Finally, the PWI gives users a simple method for comparing thermal process performance. Comparisons may be made between individual lines on the shop floor, between processes at multiple plants, and between processes using dissimilar equipment. The ability to quantify thermal process performance will give electronics assemblers a means for comparing the performance of their soldering equipment. This is of value in selecting equipment, for buy off, and for process troubleshooting.

Table 1 is the result of a series of tests comparing oven performance using several sizes of PCBs. Each board was profiled in the given oven, and then an automated profile prediction tool was used to find the optimal profile for that board in the given oven. After the oven setpoints were changed and the oven stabilized, a second profile was run to confirm that the predicted PWI had been achieved. Table 1 shows that there is significant variation in oven performance between various makes and models. In this test, Oven C had more zones than Ovens A and B, and performed better, as would be expected.

<table>
<thead>
<tr>
<th>Oven</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Board Type</th>
<th>PWI</th>
<th>PWI</th>
<th>PWI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Motherboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>X</td>
<td></td>
<td>PWI = 87%</td>
<td>PWI = 62%</td>
<td>PWI = 79%</td>
<td>PWI = 126%</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td></td>
<td>PWI = 71%</td>
<td>PWI = 58%</td>
<td>PWI = 61%</td>
<td>PWI = 93%</td>
</tr>
<tr>
<td>C</td>
<td>Z</td>
<td></td>
<td>PWI = 33%</td>
<td>PWI = 29%</td>
<td>PWI = 34%</td>
<td>PWI = 58%</td>
</tr>
</tbody>
</table>

Table 1: Comparison of Oven Performance – Best Achievable PWI

Conclusion

The simplicity of the Process Window Index makes its validity as a statistical tool readily apparent and its adoption as an industry standard clearly offers a significant opportunity for the improvement of the soldering process. The advantages detailed above point to its value in demystifying the soldering process and open the door to precision control of a process that has been ignored for too long. Issues like Lead-free electronic assembly mean that electronics assemblers can no longer be complacent about their soldering process. Sophisticated tools utilizing the PWI as a standard for accurately measuring the thermal process will mean more efficient production, improved and simplified process control, and higher quality final product.
Appendix D: How to run profiles with Profile Stacking

Profile stacking allows you to run multiple profiles (up to 30) without having to download the profile after each run. This feature is only available with the SPS Smart Profiler. The SPS Smart Profiler has the memory and logic built in to manage collection of multiple profile runs before returning to Profiling Software 2G to download the data. The device Alert LED will indicate the status of the SPS Smart Profiler, so you know when it is ready to start the next profile, without having to plug into the software.

LED Modes and Descriptions for the SPS Smart Profiler

<table>
<thead>
<tr>
<th>LED Name/ Icon/Color</th>
<th>Mode</th>
<th>LED Behavior</th>
<th>Mode Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>Charging</td>
<td>Combined solid and flashing. See description</td>
<td>Plugged into USB for charging. Each LED represents 1/3rd of battery capacity. Starting from the left the lights go from flashing to solid as the battery charge fills. Full charge when all 3 are solid.</td>
</tr>
<tr>
<td></td>
<td>Using battery power</td>
<td>Flashing every 3 seconds</td>
<td>LEDs will flash depending on amount of charge left. Minimum to 1/3rd charge left – LED 1 1/3rd to 2/3rd charge left – LED 1-2 2/3rd to full charge left – LED 1-2-3</td>
</tr>
<tr>
<td>Alert</td>
<td>Not Ready</td>
<td>Solid On</td>
<td>Cannot profile: due to TC 1 missing, TCs too hot, SPS too hot, Battery too low, startup failure, voltage too low to charge or memory full. Plug into PC and software to identify alert.</td>
</tr>
<tr>
<td></td>
<td>Ready</td>
<td>Off</td>
<td>Ready to begin profiling.</td>
</tr>
<tr>
<td>Data Collection</td>
<td>Profiling</td>
<td>Fast Flashing</td>
<td>Profiling in progress.</td>
</tr>
<tr>
<td></td>
<td>Profile Complete</td>
<td>Flashing every 3 seconds</td>
<td>One or more profiles are complete and stored in memory.</td>
</tr>
<tr>
<td></td>
<td>Data Empty</td>
<td>Off</td>
<td>No profiles stored in memory.</td>
</tr>
<tr>
<td>Communications</td>
<td>No Communications</td>
<td>Off</td>
<td>Wi-Fi not in use or not available.</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Wi-Fi In Use</td>
<td>Fast flashing</td>
<td>When profiling or downloading.</td>
</tr>
<tr>
<td></td>
<td>Wi-Fi Ready</td>
<td>Slow flashing</td>
<td>Flashing every 3 seconds when paired with Smart Dock</td>
</tr>
<tr>
<td></td>
<td>ANT</td>
<td>Beacon</td>
<td>Flashing</td>
</tr>
</tbody>
</table>
At the PC

Select the Run Profile Stacking button on the main screen.

If using the Smart Dock (transmitter mode), the software will set the SPS to profile stacking mode via the Wi-Fi connection. If running datalog mode, the user will connect a USB cable and then the software will set the SPS Smart Profiler to profile stacking mode.

1. Once the SPS and the Smart Dock are paired or the SPS is plugged directly into the USB port, click the **Profile Stacking** button.

 See the *SPS Smart Profiler Hardware Guide* for instructions on connecting the hardware to the PC.
2. The first screen in Profile Stacking confirms the connection of your SPS Smart Profiler. You must have your unit on and communicating to advance. The green checkmark indicates the software has identified the SPS, set it to profile stacking mode, and it is ready to collect data. If the TCs or Internal Temperature are too hot, or the battery voltage is too low, the green checkmark will not appear. Click the Next arrow to continue (right arrow).

3. The profiler is now ready for you to unplug from the PC (if connected) and with your SPS Smart Profiler, thermal shield, and PCB with thermocouples attached and plugged into the SPS, proceed to run your 1st profile at the oven. *Always remember to place the SPS Smart Profiler into the thermal shield prior to running the profile through the oven.*

4. Unplug SPS (if connected) and you are ready to go to the oven to profile. If using in Wi-Fi mode, simply proceed to run your 1st profile.
At the Oven

1. Plug in TCs connected to the PCB you are profiling, if you have not already done so. Check the Alert LED on the SPS for readiness to collect a profile (Alert LED should be off).

2. When ready, put the profiler in the shield and then feed the PCB and profiler into the oven.

3. **IMPORTANT:** Once the PCB and profiler come out of the oven, open the shield and remove the SPS from the shield (helps to cool) and view the Alert status. Alert LED will typically be on until the product TCs are below the defined Start Trigger and the SPS internal temp is cool enough to run another profile.

4. Proceed to collect more profiles at the oven or at other ovens, making sure to pay attention to the Alert LED status between each run. Follow steps 1-3 until all profiles are collected then return the PC.
Back at the PC

Downloading and Viewing Profiles

When the last profile is completed, return to the PC with the software running.

1. You are now back at the screen you left, to go run profiles. Connect your SPS Smart Profiler and click the Ready to Download Stacked Profiles (green downward arrow) button.

 Note: Wireless mode for profile stacking is strictly a wireless download. No live profile transmission occurs during profile runs.

2. The software determines the number of profiles stored in the SPS, and temporarily downloads the data. A message will display asking “Do you want to view profiles?” Click Yes to start the routine to identify each profile/product. Click No to cancel out of profile stacking mode and return to the Main Screen.

 Note: If you selected No in the above step, the data will not be saved in the software, but will remain inside the profiler. From the Main Screen, re-enter profile stacking mode and you will have the choice to either download and view the data, or delete the data from the device.
Name Product and Select Process Window

1. **Product Name**: Choose an existing product name from the drop down or enter a unique product name.

2. **Process Window**: Choose a process window from the drop-down list. These Process Windows are created in the Define/Edit Process Window screen accessed from the main screen.

3. **Application**: Solder Reflow Only

4. **Oven Name**: Choose an existing oven from the drop-down list. You may need to modify the existing oven recipe on the screen that follows.
 If the oven list is empty, refer to the “Identify a New Oven to the System” section of the manual.

5. **Profile Description**: Allows for freehand typing of any notes you may want to include with this profile.

Enter Oven SetPoints and Conveyor Speed Screen

1. Enter new temperature values for the top of the oven zones.
2. If the bottom of the zones have different setpoint values from the top, deselect the “Top and Bottom Setpoint are the same” checkbox and enter new temperature values in the bottom row fields as well.

| Top and Bottom Setpoints are the same |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 100 | 105 | 110 | 115 |
| 100 | 105 | 110 | 115 |

3. Type in a value in the Conveyor Speed field.

4. Click Next.

Label Thermocouples for the Profile

1. **TC checkboxes** – The software will identify the number of TCs used in each individual profile and preselect the TC checkboxes.

2. **Include thermocouple (TC) labels (20 char. Max)** – Clicking this checkbox allows the user to enter a label for each checked TC.

3. **Label** – Enter up to 20 characters to describe the placement or location of that TC.

 Note: If the selected Process Window has Separate Specs for TCs, then you must return to the Process Window-Edit Specs screen in order select/deselect TCs or change their text labels.

4. Click Traffic Light Button to download and display the first completed profile.
5. After viewing the first profile graph, when clicking the green checkmark button, you will be asked if you want to view the next profile:

Click Yes and repeat the steps noted above to enter the Product Name, Process Window, oven, oven recipe, etc. for the second profile collected.

6. After the last profile in the sequence is viewed, clicking the green checkmark will let you know that it is the last of the Stacked Profiles collected. Clicking Yes will remove all data from the profiler and return you to the main screen of the software.
Contacting KIC

On the Web

You can find the latest KIC product news along with a library of useful information at our website:
www.kicthermal.com or www.kic.cn

KIC Technical Support

KIC Tech Support is available by email:
USA: tech@kicmail.com
Europe: europe.tech@kicmail.com
Asia: asia.tech@kicmail.com

KIC Product Training

Contact KIC Customer Support by email, training@kicmail.com

KIC Sales

Contact KIC sales:
USA: sales@kicmail.com
Europe: europe.sales@kicmail.com
Asia: asia.sales@kicmail.com
China: asia.sales@kicmail.com

Find the KIC Representative in Your Area

Send an email or visit our web page to find a local representative.